数列区间
题目
输入
输出
输出共 MMM 行,每行输出一个数
输入样例
10 2
3 2 4 5 6 8 1 2 9 7
1 4
3 8
输出样例
5
8
解题思路
这题我们先看一下数据,达到了10610^6106,显然不能用线段数
那么我们就要用ststst表来解决
转移方程为:
fi,0f_{i,0}fi,0 === aia_iai
fi,jf_{i,j}fi,j === maxmaxmax(fi,j−1 , fi+2j−1,j−1)(f_{i , j - 1} \ ,\ f_{i+2^{j -1} , j - 1})(fi,j−1 , fi+2j−1,j−1)
答案为:
ansansans === maxmaxmax (fl,k , fr−2k+1,k)(f_{l,k}\ , \ f_{r - 2^k + 1,k})(fl,k , fr−2k+1,k)
程序如下
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
int n, m, x, y, a[100001], log[100001], f[100001][101];
void Log()
{
log[0] = -1;
for(int i = 1; i <= n; ++i)
log[i] = log[i >> 1] + 1;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i = 1; i <= n; ++i)
{
scanf("%d",&a[i]);
f[i][0] = a[i];
}
Log();
for(int j = 1; j <= log[n]; ++j)
{
for(int i = 1; i + (1 << j) - 1 <= n; ++i)
{
f[i][j] = max(f[i][j - 1], f[i + (1 << (j - 1))][j - 1]);
}
}
for(int i = 1; i <= m; ++i)
{
scanf("%d%d",&x,&y);
int k = log[y - x + 1];
printf("%d\n",max(f[x][k], f[y - (1 << k) + 1][k]));
}
return 0;
}