引理
1
1
1:
d
(
i
⋅
j
)
=
∑
x
∣
i
∑
y
∣
j
[
gcd
(
x
,
y
)
=
1
]
d (i \cdot j) = \sum_{x \mid i} \sum_{y \mid j} [\gcd (x,y) = 1]
d(i⋅j)=x∣i∑y∣j∑[gcd(x,y)=1]
证明:
一对满足要求的 x , y x, y x,y 可以构造出 x j y x \frac{j}{y} xyj 作为 i j ij ij 的因数。
考虑 i j ij ij 的质因子 p p p。
gcd ( x , y ) = 1 \gcd (x, y) = 1 gcd(x,y)=1 表示都在 j j j 里取出 p p p 这个因子,只有在 j j j 的 p p p 这个因子被取空后才能拿 i i i 里的 p p p 这个因子,所以不会出现类似于从 i i i 里取出一个 p p p 再从 j j j 取出一个 p p p 和从 j j j 里取出两个 p p p 这两种等价方案都算了一次的情况。
引理 2 2 2:
d ( i ⋅ j ⋅ k ) = ∑ x ∣ i ∑ y ∣ j ∑ z ∣ k [ g c d ( x , y ) = g c d ( y , z ) = g c d ( x , z ) = 1 ] d (i \cdot j \cdot k) = \sum_{x \mid i} \sum_{y \mid j} \sum_{z \mid k} [gcd (x, y) = gcd (y, z) = gcd (x, z) = 1] d(i⋅j⋅k)=∑x∣i∑y∣j∑z∣k[gcd(x,y)=gcd(y,z)=gcd(x,z)=1]
证明:类似于引理 1 1 1。
化式子
∑ i = 1 a ∑ j = 1 b ∑ k = 1 c d ( i ⋅ j ⋅ k ) ∑ i = 1 a ∑ j = 1 b ∑ k = 1 c ∑ u ∣ i ∑ v ∣ j ∑ w ∣ k [ g c d ( u , v ) = g c d ( u , w ) = g c d ( v , w ) = 1 ] ∑ u = 1 a ∑ v = 1 b ∑ w = 1 c ⌊ a u ⌋ ⌊ b v ⌋ ⌊ c w ⌋ [ g c d ( u , v ) = g c d ( u , w ) = g c d ( v , w ) = 1 ] ∑ u = 1 a ∑ v = 1 b ∑ w = 1 c ⌊ a u ⌋ ⌊ b v ⌋ ⌊ c w ⌋ ∑ d ∣ g c d ( u , v ) μ ( d ) [ g c d ( u , w ) = g c d ( v , w ) = 1 ] ∑ u = 1 a ∑ v = 1 b ∑ w = 1 c ⌊ a u ⌋ ⌊ b v ⌋ ⌊ c w ⌋ ∑ d ∣ u , d ∣ v μ ( d ) [ g c d ( u , w ) = g c d ( v , w ) = 1 ] ∑ d μ ( d ) ∑ u = 1 ⌊ a d ⌋ ∑ v = 1 ⌊ b d ⌋ ∑ w = 1 c ⌊ a u d ⌋ ⌊ b v d ⌋ ⌊ c w ⌋ [ g c d ( u d , w ) = g c d ( v d , w ) = 1 ] ∑ d μ ( d ) ∑ w = 1 c ⌊ c w ⌋ ∑ u = 1 ⌊ a d ⌋ ⌊ a u d ⌋ [ g c d ( u d , w ) = 1 ] ∑ v = 1 ⌊ b d ⌋ ⌊ b v d ⌋ [ g c d ( v d , w ) = 1 ] \begin{aligned} \sum_{i = 1}^{a} \sum_{j = 1}^{b} \sum_{k = 1}^{c} d (i \cdot j \cdot k) \\ \sum_{i = 1}^{a} \sum_{j = 1}^{b} \sum_{k = 1}^{c} \sum_{u \mid i} \sum_{v \mid j} \sum_{w \mid k} [gcd (u, v) = gcd (u, w) = gcd (v, w ) = 1] \\ \sum_{u = 1}^{a} \sum_{v = 1}^{b} \sum_{w = 1}^{c} \lfloor \frac{a}{u} \rfloor \lfloor \frac{b}{v} \rfloor \lfloor \frac{c}{w} \rfloor [gcd (u, v) = gcd (u, w) = gcd (v, w ) = 1] \\ \sum_{u = 1}^{a} \sum_{v = 1}^{b} \sum_{w = 1}^{c} \lfloor \frac{a}{u} \rfloor \lfloor \frac{b}{v} \rfloor \lfloor \frac{c}{w} \rfloor \sum_{d \mid gcd (u, v)} \mu (d) [gcd (u, w) = gcd (v, w ) = 1] \\ \sum_{u = 1}^{a} \sum_{v = 1}^{b} \sum_{w = 1}^{c} \lfloor \frac{a}{u} \rfloor \lfloor \frac{b}{v} \rfloor \lfloor \frac{c}{w} \rfloor \sum_{d \mid u, d \mid v} \mu (d) [gcd (u, w) = gcd (v, w) = 1] \\ \sum_{d} \mu (d) \sum_{u = 1}^{\lfloor \frac{a}{d} \rfloor} \sum_{v = 1}^{\lfloor \frac{b}{d} \rfloor} \sum_{w = 1}^{c} \lfloor \frac{a}{ud} \rfloor \lfloor \frac{b}{vd} \rfloor \lfloor \frac{c}{w} \rfloor [gcd (ud, w) = gcd (vd, w) = 1] \\ \sum_{d} \mu (d) \sum_{w = 1}^{c} \lfloor \frac{c}{w} \rfloor \sum_{u = 1}^{\lfloor \frac{a}{d} \rfloor} \lfloor \frac{a}{ud} \rfloor [gcd (ud, w) = 1] \sum_{v = 1}^{\lfloor \frac{b}{d} \rfloor} \lfloor \frac{b}{vd} \rfloor [gcd (vd, w) = 1] \end{aligned} i=1∑aj=1∑bk=1∑cd(i⋅j⋅k)i=1∑aj=1∑bk=1∑cu∣i∑v∣j∑w∣k∑[gcd(u,v)=gcd(u,w)=gcd(v,w)=1]u=1∑av=1∑bw=1∑c⌊ua⌋⌊vb⌋⌊wc⌋[gcd(u,v)=gcd(u,w)=gcd(v,w)=1]u=1∑av=1∑bw=1∑c⌊ua⌋⌊vb⌋⌊wc⌋d∣gcd(u,v)∑μ(d)[gcd(u,w)=gcd(v,w)=1]u=1∑av=1∑bw=1∑c⌊ua⌋⌊vb⌋⌊wc⌋d∣u,d∣v∑μ(d)[gcd(u,w)=gcd(v,w)=1]d∑μ(d)u=1∑⌊da⌋v=1∑⌊db⌋w=1∑c⌊uda⌋⌊vdb⌋⌊wc⌋[gcd(ud,w)=gcd(vd,w)=1]d∑μ(d)w=1∑c⌊wc⌋u=1∑⌊da⌋⌊uda⌋[gcd(ud,w)=1]v=1∑⌊db⌋⌊vdb⌋[gcd(vd,w)=1]
令
q
r
y
1
(
d
,
w
)
=
∑
u
=
1
⌊
a
d
⌋
⌊
a
u
d
⌋
[
g
c
d
(
u
d
,
w
)
=
1
]
,
q
r
y
2
(
d
,
w
)
=
∑
v
=
1
⌊
b
d
⌋
⌊
b
v
d
⌋
[
g
c
d
(
v
d
,
w
)
=
1
]
qry1 (d, w) = \sum_{u = 1}^{\lfloor \frac{a}{d} \rfloor} \lfloor \frac{a}{ud} \rfloor [gcd (ud, w) = 1], qry2 (d, w) = \sum_{v = 1}^{\lfloor \frac{b}{d} \rfloor} \lfloor \frac{b}{vd} \rfloor [gcd (vd, w) = 1]
qry1(d,w)=u=1∑⌊da⌋⌊uda⌋[gcd(ud,w)=1],qry2(d,w)=v=1∑⌊db⌋⌊vdb⌋[gcd(vd,w)=1]
直接暴力求
q
r
y
1
,
q
r
y
2
qry1, qry2
qry1,qry2 的时间复杂度为
O
(
n
5
2
)
O (n ^ {\frac{5}{2}})
O(n25) (令
a
,
b
,
c
,
n
a, b, c, n
a,b,c,n 同阶)
证明:
当 d ≤ a d \leq \sqrt {a} d≤a 时, 1 ≤ w , u ≤ a 1 \leq w, u \leq a 1≤w,u≤a,这部分时间复杂度为 O ( n 5 2 ) O (n ^ {\frac{5}{2}}) O(n25)
当 d > a d > \sqrt {a} d>a 时, 1 ≤ w ≤ a , 1 ≤ ⌊ a d ⌋ ≤ s q r t ( a ) 1 \leq w \leq a, 1\leq \lfloor \frac{a}{d} \rfloor \leq sqrt (a) 1≤w≤a,1≤⌊da⌋≤sqrt(a),这部分时间复杂度为 O ( n 5 2 ) O (n ^ {\frac{5}{2}}) O(n25)。
又是推错的一些没用的式子
∑
i
=
1
a
∑
j
=
1
b
∑
k
=
1
c
d
(
i
j
k
)
∑
i
=
1
a
∑
j
=
1
b
∑
k
=
1
c
∑
d
∣
i
j
k
1
∑
i
=
1
a
∑
j
=
1
b
∑
d
∑
k
=
1
,
d
∣
i
j
k
c
1
∑
i
=
1
a
∑
j
=
1
b
∑
d
⌊
c
d
gcd
(
d
,
i
j
)
⌋
∑
i
=
1
a
∑
j
=
1
b
∑
d
⌊
c
⋅
gcd
(
d
,
i
j
)
d
⌋
∑
i
=
1
a
∑
g
∑
d
⌊
c
⋅
g
d
⌋
∑
j
=
1
b
[
gcd
(
d
,
i
j
)
=
g
]
∑
i
=
1
a
∑
g
∑
d
⌊
c
⋅
g
d
⌋
∑
j
=
1
b
[
gcd
(
d
g
,
i
j
g
)
=
1
]
∑
g
∑
d
⌊
c
⋅
g
d
⌋
∑
t
∑
i
=
1
,
i
∣
t
a
[
gcd
(
d
g
,
t
g
)
=
1
]
\begin{aligned} \sum_{i = 1}^{a}\sum_{j = 1}^{b} \sum_{k = 1}^{c} d (ijk) \\ \sum_{i = 1}^{a}\sum_{j = 1}^{b} \sum_{k = 1}^{c} \sum_{d \mid ijk} 1 \\ \sum_{i = 1}^{a}\sum_{j = 1}^{b} \sum_{d} \sum_{k = 1, d \mid ijk}^{c} 1 \\ \sum_{i = 1}^{a}\sum_{j = 1}^{b} \sum_{d} \lfloor \frac{c}{\frac{d}{\gcd (d, ij)}} \rfloor \\ \sum_{i = 1}^{a}\sum_{j = 1}^{b} \sum_{d} \lfloor \frac{c \cdot \gcd (d, ij)}{d} \rfloor \\ \sum_{i = 1}^{a} \sum_{g} \sum_{d} \lfloor \frac{c \cdot g}{d} \rfloor \sum_{j = 1}^{b}[\gcd (d, ij) = g] \\ \sum_{i = 1}^{a} \sum_{g} \sum_{d} \lfloor \frac{c \cdot g}{d} \rfloor \sum_{j = 1}^{b}[\gcd (\frac{d}{g}, \frac{ij}{g}) = 1] \\ \sum_{g} \sum_{d} \lfloor \frac{c \cdot g}{d} \rfloor \sum_{t} \sum_{i = 1, i \mid t}^{a} [\gcd (\frac{d}{g}, \frac{t}{g}) = 1] \end{aligned}
i=1∑aj=1∑bk=1∑cd(ijk)i=1∑aj=1∑bk=1∑cd∣ijk∑1i=1∑aj=1∑bd∑k=1,d∣ijk∑c1i=1∑aj=1∑bd∑⌊gcd(d,ij)dc⌋i=1∑aj=1∑bd∑⌊dc⋅gcd(d,ij)⌋i=1∑ag∑d∑⌊dc⋅g⌋j=1∑b[gcd(d,ij)=g]i=1∑ag∑d∑⌊dc⋅g⌋j=1∑b[gcd(gd,gij)=1]g∑d∑⌊dc⋅g⌋t∑i=1,i∣t∑a[gcd(gd,gt)=1]