hdu5730 Shell('s) Necklace

本文探讨了一种结合CDQ分治与FFT快速傅里叶变换优化动态规划问题的方法,具体针对如何组合链子形成特定长度的链子方案数问题。通过将问题分解并利用FFT加速多项式乘法,实现从O(n^2)到O(nlog^2n)的时间复杂度优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意

nnn种链子,第iii种链子长度为iii,有aia_iai条,求用这些链子组合出长度为n的链子的方案数。

题解

开始居然没看出来这是一道dp题
fif_ifi为凑出长度为iii的链子的方案数
则有;
fi=∑j=0i−1fj∗ai−j,f0=1f_i=\sum_{j=0}^{i-1}f_j*a_{i-j}, f_0=1fi=j=0i1fjaij,f0=1
时间复杂度为O(n2)O(n^2)O(n2)显然要T。
考虑优化。发现右半部分与卷积(a∗b=∑i=1nai∗bi−ja*b=\sum_{i=1}^{n}a_i*b_{i-j}ab=i=1naibij)类似。所以考虑使用FFT
然而如果说每次转移暴力FFT,则时间复杂度瞬间飙至O(n2log2n)O(n^2log_2n)O(n2log2n),不如不优化
于是我们介绍一个新科技:CDQ分治。
下面介绍一下它的基本步骤:

cdq(l,r)cdq(l, r)cdq(l,r)
1、求解cdq(l,mid),mid=⌊l+r2⌋cdq(l, mid), mid = \lfloor\frac{l+r}{2}\rfloorcdq(l,mid),mid=2l+r
2、计算[l,mid][l,mid][l,mid][mid+1,r][mid+1,r][mid+1,r]的贡献(对[mid+1,r][mid+1, r][mid+1,r]答案的影响)
3、求解cdq(mid+1,r)cdq(mid+1, r)cdq(mid+1,r)

继续yy优化。我们用cdq(l,r)cdq(l,r)cdq(l,r)表示求解fl,fl+1,fl+2...frf_l, f_{l+1},f_{l+2}...f_rfl,fl+1,fl+2...fr
假设求出cdq(l,mid)cdq(l,mid)cdq(l,mid),令gig_igi[l,mid][l, mid][l,mid]对f[i]的贡献,hi,l=∑j=0l−1fj∗ai−jh_{i, l}=\sum_{j=0}^{l-1}f_j*a_{i-j}hi,l=j=0l1fjaij
由定义:
fi=∑j=0i−1fj∗ai−j=∑j=0l−1fj∗ai−j+∑j=mid+1i−1fj∗ai−j+gi=hi,l+∑j=mid+1i−1fj∗ai−j+∑j=lmidfj∗ai−j \begin{aligned} f_i&=\sum_{j=0}^{i-1}f_j*a_{i-j}\\ &=\sum_{j=0}^{l-1}f_j*a_{i-j}+\sum_{j=mid+1}^{i-1}f_j*a_{i-j}+g_i\\ &=h_{i, l}+\sum_{j=mid+1}^{i-1}f_j*a_{i-j}+\sum_{j=l}^{mid}f_j*a_{i-j}\\ \end{aligned}fi=j=0i1fjaij=j=0l1fjaij+j=mid+1i1fjaij+gi=hi,l+j=mid+1i1fjaij+j=lmidfjaij
cdq(l,r)cdq(l,r)cdq(l,r)的过程可知,hi,lh_{i,l}hi,l已知,∑j=mid+1i−1fj∗ai−j\sum_{j=mid+1}^{i-1}f_j*a_{i-j}j=mid+1i1fjaij将会在cdq(mid+1,r)cdq(mid+1,r)cdq(mid+1,r)中计算出,所以只需求{fl,fl+1,...,fmid}∗{a1,a2,...,ar−l+1}\{f_l,f_{l+1},...,f_{mid}\}*\{a_1,a_2,...,a_{r-l+1}\}{fl,fl+1,...,fmid}{a1,a2,...,arl+1}即可。
cdq(l,r)cdq(l,r)cdq(l,r)的过程时间复杂度为O(log2n)O(log_2n)O(log2n),FFT的时间复杂度为O(nlog2n)O(nlog_2n)O(nlog2n),故总时间复杂度为O(nlog22n)O(nlog_2^2n)O(nlog22n)

代码

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int mn = 100005, mod = 313;
const double pi = acos(-1.0);
struct com{
    double r, i;
    com(double a = 0, double b = 0) : r(a), i(b) {}
    com operator +(const com& t) {return com(r + t.r, i + t.i);}
    com operator -(const com& t) {return com(r - t.r, i - t.i);}
    com operator *(const com& t) {return com(r * t.r - i * t.i, r * t.i + i * t.r);}
}x[mn << 1], y[mn << 1], w, wn;
int a[mn], f[mn];
void change(com *x, int n)
{
    for(int i = 1, j = n >> 1; i < n - 1; i++)
    {
        if(i < j)
            swap(x[i], x[j]);
        int k = n >> 1;
        while(j >= k)
            j -= k, k >>= 1;
        j += k;
    }
}
void fft(com x[], int n, int flag)
{
    change(x, n);
    for(int i = 2; i <= n; i <<= 1)
    {
        wn = com(cos(flag * 2 * pi / i), sin(flag * 2 * pi / i));
        for(int j = 0; j < n; j += i)
        {
            w = com(1, 0);
            for(int k = j; k < j + i / 2; k++)
            {
                com u = w * x[k + i / 2], v = x[k];
                x[k] = v + u, x[k + i / 2] = v - u, w = w * wn;
            }
        }
    }
    if(flag == -1)
        for(int i = 0; i < n; i++)
            x[i].r /= n;
}
void cdq(int l, int r)
{
    if(l == r)
    {
        f[l] += a[l], f[l] %= mod;
        return;
    }
    int mid = (l + r) >> 1, i;
    cdq(l, mid);
    int len = 1;
    while(len <= r - l + 1)
        len <<= 1;
    for(i = 0; i < len; i++)
        x[i] = y[i] = com(0, 0);
    for(i = l; i <= mid; i++)
        x[i - l] = com(f[i], 0);
    for(i = 1; i <= r - l + 1; i++)
        y[i - 1] = com(a[i], 0);
    fft(x, len, 1), fft(y, len, 1);
    for(i = 0; i < len; i++)
        x[i] = x[i] * y[i];
    fft(x, len, -1);
    for(i = mid + 1; i <= r; i++)
        f[i] += int(x[i - l - 1].r + 0.5), f[i] %= mod;
    cdq(mid + 1, r);
}
int main()
{
    int n, i;
    while(~scanf("%d", &n) && n)
    {
        for(i = 1; i <= n; i++)
            scanf("%d", &a[i]), a[i] %= mod, f[i] = 0;
        cdq(0, n);
        printf("%d\n", f[n]);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值