DAP-seq——蓝景科信(无需特异性抗体,无需转基因材料,省时省力)

        无需针对每种蛋白制备特异性抗体,无需构建转基因体系,高通量检测转录因子及DNA结合蛋白的结合位点。

        蓝景科信为您提供DAP-seq全流程技术服务和个性化数据分析,具有100多个物种,2000多个转录因子的实验经验,已协助很多客户成功发表文章。例如:Molecular PlantThe Plant CellPlant PhysiologyPlant Biotechnology JournalJournal of Integrative Plant BiologyNew PhytologistCell等。

        在基因功能组学和表观遗传学研究中,转录因子结合位Transcription Factor Binding Sites, TFBS的发掘一直是研究热点之一。传统的ChIP-seq(染色质免疫共沉淀测序)方法,在抗体质量很好的情况下能够有效检测到TFBS。然而,好的抗体可遇不可求,这限制了ChIP-seq更广泛的应用。

        2016年,O'Malley RC等人在Cell上发表了使用DAP-seq技术,快速绘制转录因子调控靶向DNA区域图谱的文章。2017年,Bartlett A等在Nature Protocols上发表了DAP-seq的实验方法。DAP-seq技术使TFBS的研究不再局限于任何生物,不再受抗体质量的限制,为生命科学和医学领域转录因子的研究提供了新型高效的工具。

技术流程

已做物种

植物:

拟南芥、甘蓝型油菜、白菜、小麦、大麦、花生、辣椒、番茄、草莓、黄花棘豆、苦荞、红薯、木薯、马铃薯、烟草、人参、罂粟、甘蔗、短芒大麦草、二色补血草、烟草、百脉根、芍药、丹参、狗尾草、菠菜、玉米、大豆、高粱、藜麦、陆地棉、甜瓜、黄瓜、葡萄、灰毡毛忍冬、粉葛、三叶青、猕猴桃、香蕉、蒺藜苜蓿、紫花苜蓿、伴矿景天、苔藓、地钱、毛果杨、84K杨、小黑杨、胡杨、山新杨、小叶杨、毛白杨、刚毛柽柳、白桦、油松、毛竹、麻竹、银杏、油桐、荔枝、柑橘、甜橙、核桃、柿子、闽楠、木荷、脐橙、板栗、枣、杜梨、苹果、桃、樱桃、茶树、梅、月季、白木香、橡胶树、三角褐指藻、芥蓝、盐芥、无花果、菠萝、西瓜、甘薯、花椒、玫瑰、银腺杨、橡胶、山金柑、黄连、百合、水稻、杨树、白菜、梨、甜菜、油菜、甘蓝、野大豆、球等鞭金藻、滇杨、枸杞、龙须菜、马尾松、大叶秦艽、圆柱拟脆杆藻、茄子、集胞藻、芒果、百岁兰、柳枝稷、胡萝卜、甘野菊、生菜、燕麦、谷子、中带鼓藻、凤梨、铁皮石斛、紫菜、蔓菁、西葫芦、旱柳、杨梅、小立碗藓、紫薇、草菇、黑麦草、青蒿、千金子、黄花蒿、圆果种黄麻等

动物:

驴、飞蝗、新孢子虫、烟粉虱、草地贪夜蛾、斑点叉尾鮰、绵羊、褐飞虱、斜纹夜蛾、华贵栉孔扇贝、曼氏血吸虫

真菌:

拟轮枝镰孢菌、猪苓真菌、意大利青霉、草酸青霉、金黄壳囊孢、灵芝、糙皮侧耳、草菇、灰盖鬼伞、虫草、亚洲镰刀菌、蝗绿僵菌、裂殖壶菌、禾谷镰刀菌、元蘑、疫霉、高卢蜜环菌

细菌:

路德维希肠杆菌、嗜热厌氧杆菌、生氮假单胞菌、布鲁氏菌、肺炎克雷伯菌、类球红细菌、红杆菌科细菌、成团泛菌、铜绿假单胞菌、伯克霍尔德菌

部分客户发表文章:

Zhao H, Wan S, Huang Y, Li X, Jiao T, Zhang Z, Ma B, Zhu L, Ma F, Li M. The transcription factor MdBPC2 alters apple growth and promotes dwarfing by regulating auxin biosynthesis. Plant Cell. 2024 Feb 26;36(3):585-604. doi: 10.1093/plcell/koad297. (IF=11.6)

Yuan J, Liu X, Zhao H, Wang Y, Wei X, Wang P, Zhan J, Liu L, Li F, Ge X. GhRCD1 regulates cotton somatic embryogenesis by modulating the GhMYC3-GhMYB44-GhLBD18 transcriptional cascade. New Phytol. 2023 Oct;240(1):207-223. doi: 10.1111/nph.19120. (IF=9.4)

Yu Z, Chen X, Li Y, Shah SHA, Xiao D, Wang J, Hou X, Liu T, Li Y. ETHYLENE RESPONSE FACTOR 070 inhibits flowering in Pak-choi by indirectly impairing BcLEAFY expression. Plant Physiol. 2024 Jan 25:kiae021. doi: 10.1093/plphys/kiae021. (IF=7.4)

Cao X, Li X, Su Y, Zhang C, Wei C, Chen K, Grierson D, Zhang B. Transcription factor PpNAC1 and DNA demethylase PpDML1 synergistically regulate peach fruit ripening. Plant Physiol. 2023 Nov 22:kiad627. doi: 10.1093/plphys/kiad627. (IF=7.4)

Dong Q, Tian Y, Zhang X, Duan D, Zhang H, Yang K, Jia P, Luan H, Guo S, Qi G, Mao K, Ma F. Overexpression of the transcription factor MdWRKY115 improves drought and osmotic stress tolerance by directly binding to the MdRD22 promoter in apple. Hortic Plant J. 2023. doi: 10.1016/j.hpj.2023.05.005. (IF=5.7)

Fang Y, Wang D, Xiao L, Quan M, Qi W, Song F, Zhou J, Liu X, Qin S, Du Q, Liu Q, El-Kassaby YA, Zhang D. Allelic variation in transcription factor PtoWRKY68 contributes to drought tolerance in Populus. Plant Physiol. 2023. doi: 10.1093/plphys/kiad315. (IF=8.005)

Zhu J, Wei X, Yin C, Zhou H, Yan J, He W, Yan J, Li H. ZmEREB57 regulates OPDA synthesis and enhances salt stress tolerance through two distinct signalling pathways in Zea mays. Plant Cell Environ. 2023. doi: 10.1111/pce.14644. (IF=7.947)

Han P, Hua Z, Zhao Y, Huang L, Yuan Y. PuCRZ1, an C2H2 transcription factor from Polyporus umbellatus, positively regulates mycelium response to osmotic stress. Front Microbiol. 2023. 14:1131605. doi: 10.3389/fmicb.2023.1131605. (IF=6.064)

Zhang SL, Wang L, Yao J, Wu N, Ahmad B, Nocker S, Wu JY, Abudureheman R, Li Z, Wang XP. Control of ovule development in Vitis vinifera by VvMADS28 and interacting genes. Horticulture Research. 2023. doi: 10.1093/hr/uhad070. (IF=7.291)

Wang L, Tian T, Liang J, Li R, Xin X, Qi Y, Zhou Y, Fan Q, Ning G, Becana M, Duanmu D. A transcription factor of the NAC family regulates nitrate-induced legume nodule senescence. New Phytol. 2023. 238(5): 2113-2129. doi: 10.1111/nph.18896. (IF=10.323)

Sun Y, Han Y, Sheng K, Yang P, Cao Y, Li H, Zhu QH, Chen J, Zhu S, Zhao T. Single-cell transcriptomic analysis reveals the developmental trajectory and transcriptional regulatory networks of pigment glands in Gossypium bickii. Mol Plant. 2023. doi: 10.1016/j.molp.2023.02.005. (IF=21.949)

Liu Y, Liu Q, Li X, Zhang Z, Ai S, Liu C, Ma F, Li C. MdERF114 enhances the resistance of apple roots to Fusarium solani by regulating the transcription of MdPRX63. Plant Physiol. 2023. doi: 10.1093/plphys/kiad057. (IF=8.005)

Liu YN, Wu FY, Tian RY, Shi YX, Xu ZQ, Liu JY, Huang J, Xue FF, Liu BY, Liu GQ. The bHLH-zip transcription factor SREBP regulates triterpenoid and lipid metabolisms in the medicinal fungus Ganoderma lingzhi. Commun Biol. 2023. doi: 10.1038/s42003-022-04154-6. (IF=6.548)

Liu L, Chen G, Li S, Gu Y, Lu L, Qanmber G, Mendu V, Liu Z, Li F, Yang Z. A brassinosteroid transcriptional regulatory network participates in regulating fiber elongation in cotton. Plant Physiol. 2022. doi: 10.1093/plphys/kiac590. (IF=8.005)

Li M, Hou L, Zhang C, Yang W, Liu X, Zhao H, Pang X, Li Y. Genome-wide identification of direct targets of ZjVND7 reveals the putative roles of whole-genome duplication in Sour jujube in regulating xylem vessel differentiation and drought tolerance. Front Plant Sci. 2022. 13: 829765. doi: 10.3389/fpls.2022.829765. (IF=6.627)

Bi Y, Wang H, Yuan X, Yan Y, Li D, Song F. The NAC transcription factor ONAC083 negatively regulates rice immunity against Magnaporthe oryzae by directly activating transcription of the RING-H2 gene OsRFPH2-6. J Integr Plant Biol. 2022. doi: 10.1111/jipb.13399. (IF=9.106)

Guo X, Yu X, Xu Z, Zhao P, Zou L, Li W, Geng M, Zhang P, Peng M, Ruan M. CC-type glutaredoxin, MeGRXC3, associates with catalases and negatively regulates drought tolerance in cassava (Manihot esculenta Crantz). Plant Biotechnol J. 2022. doi: 10.1111/pbi.13920. (IF=13.263)

Chai Z, Fang J, Huang C, Huang R, Tan X, Chen B, Yao W, Zhang M. A novel transcription factor, ScAIL1, modulates plant defense responses by targeting DELLA and regulating gibberellin and jasmonic acid signaling in sugarcane. J Exp Bot. 2022. 73: 6727-6743. doi: 10.1093/jxb/erac339. (IF=7.298)

Li R, Zheng W, Yang R, Hu Q, Ma L, Zhang H. OsSGT1 promotes melatonin-ameliorated seed tolerance to chromium stress by affecting the OsABI5-OsAPX1 transcriptional module in rice. Plant J. 2022. 112: 151-171. doi: 10.1111/tpj.15937. (IF=5.726)

Li Q, Zhou L, Chen Y, Xiao N, Zhang D, Zhang M, Wang W, Zhang C, Zhang A, Li H, Chen J, Gao Y. Phytochrome interacting factor regulates stomatal aperture by coordinating red light and abscisic acid. Plant Cell. 2022. 34: 4293-4312. doi: 10.1093/plcell/koac244. (IF=12.085)

Luo M, Lu B, Shi Y, Zhao Y, Wei Z, Zhang C, Wang Y, Liu H, Shi Y, Yang J, Song W, Lu X, Fan Y, Xu L, Wang R, Zhao J. A newly characterized allele of ZmR1 increases anthocyanin content in whole maize plant and the regulation mechanism of different ZmR1 alleles. Theor Appl Genet. 2022. 135: 3039-3055. doi: 10.1007/s00122-022-04166-0. (IF=5.574)

Wei H, Xu H, Su C, Wang X, Wang L. Rice CIRCADIAN CLOCK ASSOCIATED 1 transcriptionally regulates ABA signaling to confer multiple abiotic stress tolerance. Plant Physiol. 2022. 190: 1057-1073. doi: 10.1093/plphys/kiac196. (IF=8.005)

Tang N, Cao Z, Yang C, Ran D, Wu P, Gao H, He N, Liu G, Chen Z. A R2R3-MYB transcriptional activator LmMYB15 regulates chlorogenic acid biosynthesis and phenylpropanoid metabolism in Lonicera macranthoides. Plant Sci. 2021. 308: 110924. doi: 10.1016/j.plantsci.2021.110924. (IF=5.363)

Liang S, Gao X, Wang Y, Zhang H, Yin K, Chen S, Zhang M, Zhao R. Phytochrome-interacting factors regulate seedling growth through ABA signaling. Biochem Biophys Res Commun. 2020. 526: 1100-1105. doi: 10.1016/j.bbrc.2020.04.011. (IF=3.322)

Yao J, Shen Z, Zhang Y, Wu X, Wang J, Sa G, Zhang Y, Zhang H, Deng C, Liu J, Hou S, Zhang Y, Zhang Y, Zhao N, Deng S, Lin S, Zhao R, Chen S. Populus euphratica WRKY1 binds the promoter of H+-ATPase gene to enhance gene expression and salt tolerance. J Exp Bot. 2020. 71: 1527-1539. doi: 10.1093/jxb/erz493. (IF=5.36)

蓝景科信技术服务

### 回答1: ChIP-seq(Chromatin Immunoprecipitation sequencing)是一种用于研究基因组上转录因子和其他蛋白质与DNA相互作用的方法。它通过先对特定蛋白质与DNA的结合位点进行免疫沉淀,再对沉淀下来的DNA片段进行测序来确定该蛋白质结合的基因位点。 CUT(Chromatin Uptake Test)是一种用于评估基因组上DNA片段与转录因子结合位点的灵敏度和特异性的方法。它通过将转录因子和指定的DNA片段混合,再检测该片段与转录因子的结合情况,来评估该片段是否是有效的转录因子结合位点。 ### 回答2: &RUN和CUT&RUN。 ChIP-seq (染色质免疫共沉淀测序)是一种广泛应用于研究DNA与蛋白质相互作用的技术。它通过特定抗体选择性地富集感兴趣的染色质区域,然后将富集的DNA进行测序,从而揭示DNA上与特定蛋白质的结合位点。这种技术常用于研究转录因子结合位点、组蛋白修饰和表观遗传学等领域。ChIP-seq技术的发展使得我们能够全面了解基因组中与蛋白质结合相关的生物学事件。 CUT&RUN (在位关联与次世代测序)是一种近年来涌现的新技术,用于研究蛋白质-DNA相互作用。CUT&RUN利用转录因子结合的DNA线索,将固定在细胞核中蛋白质DNA复合物释放,并以线粒体在胞浆液相中的镍作为固定荧光探针依赖式的。”CLEUR-inatableCLEUR发发挥增长实际形态用聚合物精确分子一次性直到整个复习常常经历。这种华丽奇妙的结果将DNA定点修复到某些酶反应的消息。 ChIP-seq和CUT&RUN都是现代生命科学中常用的技术,用于揭示蛋白质-DNA相互作用引发的生物学进程。虽然它们基本原理不同,但这两种技术的应用领域有许多重叠之处。使用这些技术,科学家可以研究基因组中特定区域的结构和功能,从而深入理解遗传和表观遗传学机制。 ### 回答3: &Tag=biotech.chapter.peak.finding and differential binding analysis ChIP-seq(染色质免疫沉淀测序)和CUT(染色质核苷酸可及性测序)是两种在研究染色质调控方面广泛使用的测序技术。 ChIP-seq是通过免疫沉淀染色质中特定蛋白质结合的DNA片段,并使用高通量测序技术对其进行测序。这种技术可以用来研究蛋白质与特定基因座的相互作用,从而帮助我们了解基因调控的分子机制。通过ChIP-seq,我们可以鉴定蛋白质结合位点的位置,进而确定哪些区域与基因表达相关。此外,ChIP-seq还可以用于研究转录因子的结合位点、组蛋白修饰和染色质重塑等过程。 CUT是一种用于研究染色质核苷酸可及性的测序技术。通过CUT技术,可以高通量测定染色质中DNA的特定区域是否处于开放的染色质结构。开放的染色质结构通常与基因的转录活性相关。CUT可以通过抑制DNA甲基化酶或降低染色质的凝结程度来确定染色质核苷酸的可及性。CUT技术还可以用于研究染色质可及性与某些疾病和发育过程之间的关联。 总而言之,ChIP-seq和CUT是两种重要的染色质测序技术,可以帮助我们揭示染色质调控的分子机制。ChIP-seq可以鉴定蛋白质结合位点,而CUT可以测定染色质核苷酸的可及性。这些技术的应用有助于我们进一步了解基因调控、转录因子结合、染色质修饰和疾病发生等过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值