Ubuntu18.04制作pytorch镜像

写在前面:
  请参考之前的文章安装好CentOS、NVIDIA相关驱动及软件、docker及加速镜像。
  主机运行环境

$ uname -a
Linux CentOS 3.10.0-514.26.2.el7.x86_64 #1 SMP Tue Jul 4 15:04:05 UTC 2017 x86_64 x86_64 x86_64 GNU/Linux
$ cat /usr/local/cuda/version.txt
CUDA Version 8.0.61
$ cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
#define CUDNN_MAJOR      6
#define CUDNN_MINOR      0
#define CUDNN_PATCHLEVEL 21
#define CUDNN_VERSION    (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)
#include "driver_types.h"
# NVIDIA 1080ti

一、关于GPU的挂载

  1. 在docker运行时指定device挂载
      先查看一下有哪些相关设备
$ ls -la /dev | grep nvidia
crw-rw-rw-   1 root root    195,   0 Nov 15 13:41 nvidia0
crw-rw-rw-   1 root root    195,   1 Nov 15 13:41 nvidia1
crw-rw-rw-   1 root root    195, 255 Nov 15 13:41 nvidiactl
crw-rw-rw-   1 root root    242,   0 Nov 15 13:41 nvidia-uvm
crw-rw-rw-   1 root root    242,   1 Nov 15 13:41 nvidia-uvm-tools

电脑上装了两个显卡。我需要运行pytorch,dockerhub中pytorch官方镜像没有gpu支持,所以只能先pull一个anaconda镜像试试,后面可以编排成Dockerfile。

$ docker run -it -d --rm --name pytorch -v /home/qiyafei/pytorch:/mnt/home --privileged=true --device /dev/nvidia-uvm:/dev/nvidia-uvm --device /dev/nvidia1:/dev/nvidia1 --device /dev/nvidiactl:/dev/nvidiactl  okwrtdsh/anaconda3  bash

okwrtdsh的镜像似乎是针对他们实验室GPU环境的,有点过大了,不过勉强运行一下还是可以的。在容器内部还需要安装pytorch:

$ conda install pytorch torchvision -c pytorch

这里运行torch成功,但是加载显卡失败了,可能还是因为驱动不匹配的原因吧,需要重新安装驱动,暂时不做此尝试;

二、通过nvidia-docker在docker内使用显卡
在这里插入图片描述详细信息:https://github.com/NVIDIA/nvidia-docker

1)安装nvidia-docker(docker19.03后nvidia-docker弃用)

nvidia-docker其实是docker引擎的一个应用插件,专门面向NVIDIA GPU,因为docker引擎是不支持NVIDIA驱动的,安装插件后可以在用户层上直接使用cuda。具体看上图。这个图很形象,docker引擎的运行机制也表现出来了,就是在系统内核之上通过cgroup和namespace虚拟出一个容器OS的用户空间,我不清楚这是否运行在ring0上,但是cuda和应用确实可以使用了(虚拟化的问题,如果关心此类问题可以了解一些关于docker、kvm等等虚拟化的实现方式,目前是系统类比较火热的话题)
  下载rpm包:https://github.com/NVIDIA/nvidia-docker/releases/download/v1.0.1/nvidia-docker-1.0.1-1.x86_64.rpm
  这里也可以通过添加apt或者yum sourcelist的方式进行安装,但是我没有root权限,而且update容易引起docker重启,如果不是实验室的个人环境不推荐这么做,防止破坏别人正在运行的程序。

$ sudo rpm -i nvidia-docker-1.0.1-1.x86_64.rpm && rm nvidia-docker-1.0.1-1.x86_64.rpm
$ sudo systemctl start nvidia-docker

2)容器测试

我们还需要NVIDIA官方提供的docker容器nvidia/cuda,里面已经编译安装了CUDA和CUDNN,或者直接run,缺少image的会自动pull。

$ docker pull nvidia/cuda
$ nvidia-docker run --rm nvidia/cuda nvidia-smi

在容器内测试是可以成功使用nvidia显卡的:
  在这里插入图片描述

3)合适的镜像或者自制dockerfile

合适的镜像:这里推荐Floydhub的pytorch,注意对应的cuda和cudnn版本。

docker pull floydhub/pytorch:0.3.0-gpu.cuda8cudnn6-py3.22
nvidia-docker run -ti -d --rm floydhub/pytorch:0.3.0-gpu.cuda8cudnn6-py3.22 bash

在这里插入图片描述

自制dockerfile

首先,我们需要把要装的东西想清楚:
  1. 基础镜像肯定是NVIDIA官方提供的啦,最省事,不用装cuda和cudnn了;
  2. vim、git、lrzsz、ssh这些肯定要啦;
  3. anaconda、pytorch肯定要啦;
  所以需要准备好国内源source.list,否则安装速度很慢。

deb-src http://archive.ubuntu.com/ubuntu xenial main restricted #Added by software-properties
deb http://mirrors.aliyun.com/ubuntu/ xenial main restricted
deb-src http://mirrors.aliyun.com/ubuntu/ xenial main restricted multiverse universe #Added by software-properties
deb http://mirrors.aliyun.com/ubuntu/ xenial-updates main restricted
deb-src http://mirrors.aliyun.com/ubuntu/ xenial-updates main restricted multiverse universe #Added by software-properties
deb http://mirrors.aliyun.com/ubuntu/ xenial universe
deb http://mirrors.aliyun.com/ubuntu/ xenial-updates universe
deb http://mirrors.aliyun.com/ubuntu/ xenial multiverse
deb http://mirrors.aliyun.com/ubuntu/ xenial-updates multiverse
deb http://mirrors.aliyun.com/ubuntu/ xenial-backports main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ xenial-backports main restricted universe multiverse #Added by software-properties
deb http://archive.canonical.com/ubuntu xenial partner
deb-src http://archive.canonical.com/ubuntu xenial partner
deb http://mirrors.aliyun.com/ubuntu/ xenial-security main restricted
deb-src http://mirrors.aliyun.com/ubuntu/ xenial-security main restricted multiverse universe #Added by software-properties
deb http://mirrors.aliyun.com/ubuntu/ xenial-security universe
deb http://mirrors.aliyun.com/ubuntu/ xenial-security multiverse

下载anaconda的地址:https://repo.continuum.io/archive/Anaconda3-5.0.1-Linux-x86_64.sh,这里直接在Dockerfile里下了,具体如下:

$ vim Dockerfile

FROM nvidia/cuda
LABEL author="qyf"
ENV PYTHONIOENCODING=utf-8
RUN mv /etc/apt/sources.list /etc/apt/sources.list.bak
ADD $PWD/sources.list /etc/apt/sources.list
RUN apt-get update --fix-missing && \
    apt-get install -y vim net-tools curl wget git bzip2 ca-certificates libglib2.0-0 libxext6 libsm6 libxrender1 mercurial subversion apt-transport-https software-properties-common
RUN apt-get install -y openssh-server -y
RUN echo 'root:passwd' | chpasswd
RUN sed -i 's/PermitRootLogin prohibit-password/PermitRootLogin yes/' /etc/ssh/sshd_config
RUN sed -i 's/#PasswordAuthentication yes/PasswordAuthentication yes/' /etc/ssh/sshd_config
RUN echo 'export PATH=/opt/conda/bin:$PATH' > /etc/profile.d/conda.sh && wget --quiet https://repo.continuum.io/archive/Anaconda3-5.0.1-Linux-x86_64.sh -O ~/anaconda.sh && /bin/bash ~/anaconda.sh -b -p /opt/conda && rm ~/anaconda.sh
ENV PATH /opt/conda/bin:$PATH
RUN conda install pytorch torchvision -c pytorch -y
ENTRYPOINT [ "/usr/bin/tini", "--" ]
CMD [ "/bin/bash" ]

通过docker build构造镜像:

docker build -t pytorch/cuda8 ./

运行成功调用cuda。
  在这里插入图片描述
三、关于一些bug
  这里有部分debian的配置,我照着dockerhub上anaconda镜像抄的,这里就不再配置了,反正跑起来后有镜像也可以用。系统随后可能会出现错误:
kernel:unregister_netdevice: waiting for lo to become free. Usage count = 1
在这里插入图片描述这是一个Ubuntu的内核错误,截止到到目前为止似乎还没完全解决。
在这里插入图片描述这个小哥给出了一个解决方案,至少他给出的错误原因我是相信的:是由内核的TCP套接字错误引发的。这里我给出一些思考,关于上面的结构图,在显卡上,通过nvidia-docker,docker之上的容器可以使用到底层显卡(驱动显然是在docker之下的),而TCP套接字,我猜测也是这种使用方法,而虚拟出来的dockerOS,应该是没有权限来访问宿主机内核的,至少内核限制了部分权限。这位小哥给出了测试内核,如果有兴趣可以去帮他测试一下:https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1711407/comments/46。

要在Ubuntu 18.04上安装Miniconda和PyTorch,您可以按照以下步骤进行操作: 1. 首先,创建一个新的目录来安装Miniconda。您可以使用以下命令创建一个名为"miniconda"的目录: ``` mkdir miniconda cd miniconda ``` 2. 下载Miniconda的安装脚本。您可以使用以下命令从清华大学镜像站下载最新的Miniconda3安装脚本: ``` wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-latest-Linux-x86_64.sh ``` 3. 运行安装脚本并按照提示进行安装。您可以使用以下命令运行安装脚本: ``` bash Miniconda3-latest-Linux-x86_64.sh ``` 在安装过程中,您需要接受许可协议、选择安装目录和是否将Miniconda添加到系统路径中。您可以按照默认设置进行选择。 4. 安装完成后,需要打开一个新的终端窗口或运行以下命令以使更改生效: ``` source ~/.bashrc ``` 5. 创建一个新的conda环境并激活它。您可以使用以下命令创建一个名为"pytorch"的环境: ``` conda create -n pytorch ``` 然后,使用以下命令激活该环境: ``` conda activate pytorch ``` 6. 接下来,您可以使用conda安装pytorch和相应的依赖项。根据您的需求,您可以选择安装CPU版本或GPU版本的PyTorch。例如,要安装GPU版本的PyTorch,可以使用以下命令: ``` conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c conda-forge ``` 请确保您的计算机上已安装适当的NVIDIA驱动程序和CUDA工具包。 7. 安装完成后,您可以在创建的conda环境中使用PyTorch了。您可以使用以下命令启动Python解释器并导入PyTorch来验证安装是否成功: ``` python import torch print(torch.__version__) ``` 如果没有出现错误并且打印出了PyTorch的版本号,则表示安装成功。 请注意,这里只提供了Miniconda的安装和PyTorch的基本安装步骤。根据您的具体需求,可能还需要安装其他依赖项或配置环境。建议您参考Miniconda和PyTorch的官方文档以获取更详细的信息和指南。 <span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [ubuntu18.04中miniconda安装及使用](https://blog.csdn.net/qq_60225495/article/details/120444089)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值