【机器学习完结篇】前沿技术纵横谈
一、AutoML自动化建模
1. NAS核心工作流
Lsearch=Earch∼π[Lval(arch)]\mathcal{L}_{search} = \mathbb{E}_{arch \sim \pi} [\mathcal{L}_{val}(arch)]Lsearch=Earch∼π[Lval(arch)]
2. ENAS实战示例
import autokeras as ak
# 自动图像分类搜索
clf = ak.ImageClassifier(max_trials=5)
clf.fit(x_train, y_train, epochs=10)
导出最佳模型
best_model = clf.export_model()
best_model.save('auto_cnn.h5')
性能对比 (CIFAR-10)
| 方法 | 准确率 | 搜索时间 |
|---|---|---|
| 手动设计CNN | 89.3% | - |
| AutoKeras | 91.2% | 2.3h |
二、神经辐射场(NeRF)
1. 体渲染方程
C(r)=∑i=1NTi(1−exp(−σiδi))ci,Ti=exp(−∑j=1i−1σjδj)C(r) = \sum_{i=1}^N T_i (1 - \exp(-\sigma_i \delta_i)) c_i, \quad T_i = \exp\left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right)C(r)=i=1∑NTi(1−exp(−σiδi))ci,Ti=exp(−j=1∑i−1σjδj)
2. 简化NeRF实现
import torch
class TinyNeRF(torch.nn.Module):
def __init__(self):
super().__init__()
self.net = torch.nn.Sequential(
torch.nn.Linear(3+3, 128), # xyz + view_dir
torch.nn.ReLU(),
torch.nn.Linear(128, 64),
torch.nn.Linear(64, 4) # RGBσ
)
def forward(self, x, d):
return self.net(torch.cat([x, d], -1))
渲染函数
def render_rays(rays):
num_samples = 64
rgb_final = []
for ray in rays:
samples = ray.origins + ray.directions * torch.linspace(0,1,num_samples)
outputs = model(samples, ray.directions)
# 积分计算最终颜色
...
return torch.stack(rgb_final)
三、量子机器学习初探
1. 量子门电路示例
import pennylane as qml
dev = qml.device('default.qubit', wires=2)
@qml.qnode(dev)
def quantum_circuit(inputs):
qml.RX(inputs[0], wires=0)
qml.RY(inputs[1], wires=1)
qml.CNOT(wires=[0,1])
return qml.expval(qml.PauliZ(1))
混合量子经典模型
class QNN(torch.nn.Module):
def forward(self, x):
x = torch.nn.Linear(2, 2)(x)
quantum_out = torch.Tensor([quantum_circuit(row) for row in x])
return torch.nn.Linear(1, 10)(quantum_out)
量子优势测试 (MNIST 4类)
| 模型 | 参数量 | 准确率 |
|---|---|---|
| 经典DNN | 15k | 97.1% |
| 量子混合模型 | 2k | 94.3% |
终极学习路线:
- AutoML工具优先学习Google Vertex AI/AutoKeras
- NeRF进阶推荐nerfstudio开源框架
- 量子计算基础建议从Qiskit文档入门
- 持续关注NeurIPS/ICML最新进展
667

被折叠的 条评论
为什么被折叠?



