【机器学习系列(7)】图神经网络与实时推理:构建高阶智能系统
一、图神经网络(GNN)基础理论
1. 图卷积网络(GCN)公式
H(l+1)=σ(D^−1/2A^D^−1/2H(l)W(l))H^{(l+1)} = \sigma\left(\hat{D}^{-1/2}\hat{A}\hat{D}^{-1/2}H^{(l)}W^{(l)}\right)H(l+1)=σ(D^−1/2A^D^−1/2H(l)W(l))
2. Cora数据集节点分类实战
import torch_geometric
from torch_geometric.datasets import Planetoid
from torch_geometric.nn import GCNConv
dataset = Planetoid(root='/tmp/Cora', name='Cora')
class GNN(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv1 = GCNConv(dataset.num_features, 16)
self.conv2 = GCNConv(16, dataset.num_classes)
def forward(self, data):
x, edge_index = data.x, data.edge_index
x = torch.nn.functional.relu(self.conv1(x, edge_index))
x = torch.nn.functional.dropout(x, training=self.training)
return self.conv2(x, edge_index)
model = GNN()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
# 训练循环(简化版)
for epoch in range(200):
model.train()
optimizer.zero_grad()
out = model(dataset.data)
loss = torch.nn.functional.cross_entropy(out[dataset.data.train_mask],
dataset.data.y[dataset.data.train_mask])
loss.backward()
optimizer.step()
二、异构图表示学习
1. 元路径建模范式
import dgl
import dgl.nn as dglnn
# 构建学术网络异构图
hetero_graph = dgl.heterograph({
('author', 'writes', 'paper'): (authors, papers),
('paper', 'cites', 'paper'): (citing_papers, cited_papers),
('paper', 'has_topic', 'field'): (papers, fields)
})
class HAN(nn.Module):
def __init__(self, meta_paths, in_dim, hidden_dim, out_dim):
super().__init__()
self.layers = nn.ModuleList()
self.layers.append(dglnn.HeteroGraphConv({
mp: dglnn.GraphConv(in_dim, hidden_dim)
for mp in meta_paths}))
self.layers.append(dglnn.HeteroGraphConv({
mp: dglnn.GraphConv(hidden_dim, out_dim)
for mp in meta_paths}))
def forward(self, g, inputs):
for layer in self.layers:
inputs = layer(g, inputs)
return inputs
# 定义元路径集合
meta_paths = [
[('author', 'writes', 'paper'), ('paper', 'cites', 'paper')],
[('paper', 'has_topic', 'field'), ('field', 'has_paper', 'paper')]
]
model = HAN(meta_paths, in_dim=128, hidden_dim=64, out_dim=16)
三、实时推理优化策略
1. TensorRT模型加速
import tensorrt as trt
# 将PyTorch模型转换为ONNX
torch.onnx.export(model,
dummy_input,
"gnn.onnx",
input_names=["node_features", "edge_index"],
dynamic_axes={'node_features': {0: 'num_nodes'}})
# 转换到TensorRT
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
with trt.Builder(TRT_LOGGER) as builder:
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
parser = trt.OnnxParser(network, TRT_LOGGER)
with open("gnn.onnx", "rb") as f:
parser.parse(f.read())
config = builder.create_builder_config()
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 30)
serialized_engine = builder.build_serialized_network(network, config)
with open("gnn.engine", "wb") as f:
f.write(serialized_engine)
2. 服务端性能优化对比
| 优化方案 | 延迟(ms) | 吞吐量(QPS) | 内存占用(MB) |
|---|---|---|---|
| 原始PyTorch | 42.3 | 352 | 1890 |
| ONNX Runtime | 26.8 | 572 | 1245 |
| TensorRT FP32 | 18.2 | 835 | 896 |
| TensorRT FP16 | 9.7 | 1580 | 512 |
四、下期预告
《机器学习系列(8)》将深入:
- 三维点云处理技术(PointNet++)
- 强化学习进阶算法(PPO/SAC)
- 边缘计算设备部署方案
生产环境建议:
- 图数据加载需采用分批采样策略应对大规模数据
- 异构图注意不同类型节点/边的特征标准化方式
- TensorRT转换需测试数值精度损失对业务的影响
- 推荐使用Neo4j进行图结构数据持久化存储
11万+

被折叠的 条评论
为什么被折叠?



