本系列文章跟随《MetaGPT多智能体课程》(https://github.com/datawhalechina/hugging-multi-agent),深入理解并实践多智能体系统的开发。
本文为该课程的第四章(多智能体开发)的第五篇笔记。今天我们拆解一个之前提到过的多智能体案例 - BabyAGI,梳理出其实现原理,多智能体间的交互过程(数据流)。这是最原生的多智能体案例,没有用类似AutoGPT或MetaGPT等任何多智能体框架。从这个案例中我们能更好地理解智能体的底层实现原理。
系列笔记
- 【AI Agent系列】【MetaGPT多智能体学习】0. 环境准备 - 升级MetaGPT 0.7.2版本及遇到的坑
- 【AI Agent系列】【MetaGPT多智能体学习】1. 再理解 AI Agent - 经典案例和热门框架综述
- 【AI Agent系列】【MetaGPT多智能体学习】2. 重温单智能体开发 - 深入源码,理解单智能体运行框架
- 【AI Agent系列】【MetaGPT多智能体学习】3. 开发一个简单的多智能体系统,兼看MetaGPT多智能体运行机制
- 【AI Agent系列】【MetaGPT多智能体学习】4. 基于MetaGPT的Team组件开发你的第一个智能体团队
- 【AI Agent系列】【MetaGPT多智能体学习】5. 多智能体案例拆解 - 基于MetaGPT的智能体辩论(附完整代码)
- 【AI Agent系列】【MetaGPT多智能体学习】6. 多智能体实战 - 基于MetaGPT实现游戏【你说我猜】(附完整代码)
文章目录
0. BabyAGI 简介
项目地址:https://github.com/yoheinakajima/babyagi/blob/main/README.md
该项目是一个 AI 支持的任务管理系统示例,它根据初始任务或目标,利用OpenAI创建任务列表,并对任务进行优先级排序和执行任务。其背后的主要思想是基于先前任务的结果和预定义的目标创建任务,然后使用 OpenAI 的能力根据目标创建新任务。这是原始的任务驱动的自驱Agent(2023 年 3 月 28 日)的简化版本。
0.1 运行流程
其运行流程如下:
(1)从任务列表中提取第一个任务
(2)将任务发送到执行代理(Execution Agent),该Agent使用LLM根据上下文完成任务。
(3)丰富结果并将其存储在向量数据库中
(4)创建新任务,并根据上一任务的目标和结果重新确定任务列表的优先级。
(5)重复以上步骤
其中涉及四个Agent,前三个Agent都利用了大模型的能力来进行任务规划和总结:
-
Execution Agent 接收目标和任务,调用大模型 LLM来生成任务结果。
-
Task
订阅专栏 解锁全文
2717

被折叠的 条评论
为什么被折叠?



