本系列文章跟随《MetaGPT多智能体课程》(https://github.com/datawhalechina/hugging-multi-agent),深入理解并实践多智能体系统的开发。
本文为该课程的第四章(多智能体开发)的第六篇笔记。
前文(【AI Agent系列】【MetaGPT多智能体学习】7. 剖析BabyAGI:原生多智能体案例一探究竟(附简化版可运行代码))我们已经详细拆机了多智能体案例 - BabyAGI的运行流程和原理。
本文我们来使用 MetaGPT 实现一遍BabyAGI,巩固《MetaGPT多智能体课程》的学习效果。
系列笔记
- 【AI Agent系列】【MetaGPT多智能体学习】0. 环境准备 - 升级MetaGPT 0.7.2版本及遇到的坑
- 【AI Agent系列】【MetaGPT多智能体学习】1. 再理解 AI Agent - 经典案例和热门框架综述
- 【AI Agent系列】【MetaGPT多智能体学习】2. 重温单智能体开发 - 深入源码,理解单智能体运行框架
- 【AI Agent系列】【MetaGPT多智能体学习】3. 开发一个简单的多智能体系统,兼看MetaGPT多智能体运行机制
- 【AI Agent系列】【MetaGPT多智能体学习】4. 基于MetaGPT的Team组件开发你的第一个智能体团队
- 【AI Agent系列】【MetaGPT多智能体学习】5. 多智能体案例拆解 - 基于MetaGPT的智能体辩论(附完整代码)
- 【AI Agent系列】【MetaGPT多智能体学习】6. 多智能体实战 - 基于MetaGPT实现游戏【你说我猜】(附完整代码)
- 【AI Agent系列】【MetaGPT多智能体学习】7. 剖析BabyAGI:原生多智能体案例一探究竟(附简化版可运行代码)
文章目录
0. 实现思路分析
BabyAGI 可以简化为三个 Agent,分别为:
-
Execution Agent 接收目标和任务,调用大模型 LLM来生成任务结果。
-
Task Creation Agent 使用大模型LLM 根据目标和前一个任务的结果创建新任务。它的输入是:目标,前一个任务的结果,任务描述和当前任务列表。
-
Prioritization Agent 使用大模型LLM对任务列表进行重新排序。它接受一个参数:当前任务的 ID
Agent的创建与Action的定义我们已经练习过很多次了,应该比较熟练了。个人认为用MetaGPT重构BabyAGI的主要思考点在于:
(1)怎么组织数据流,Agent需要的信息是什么
(2)怎么打通数据流,Agent间的消息如何传递
(3)一些公共的数据怎么存储,例如 objective目标、task列表
上面这三个思考点实现思路都很简单,但想调出通用性强且效果好的最终应用,比较难。下面的思考仅为各位读者提供思路,具体效果的优化需要慢慢调。
1. 编写代码
1.1 Task Creation Agent
1.1.1 Action定义
原 BabyAGI 是给定一个初始任务,先执行任务,然后再执行 TaskCreatio
订阅专栏 解锁全文
863

被折叠的 条评论
为什么被折叠?



