【AI Agent系列】【MetaGPT多智能体学习】8. MetaGPT多智能体进阶练习 - 使用MetaGPT重构BabyAGI

本系列文章跟随《MetaGPT多智能体课程》(https://github.com/datawhalechina/hugging-multi-agent),深入理解并实践多智能体系统的开发。

本文为该课程的第四章(多智能体开发)的第六篇笔记。

前文(【AI Agent系列】【MetaGPT多智能体学习】7. 剖析BabyAGI:原生多智能体案例一探究竟(附简化版可运行代码))我们已经详细拆机了多智能体案例 - BabyAGI的运行流程和原理。

本文我们来使用 MetaGPT 实现一遍BabyAGI,巩固《MetaGPT多智能体课程》的学习效果。

系列笔记

0. 实现思路分析

BabyAGI 可以简化为三个 Agent,分别为:

  • Execution Agent 接收目标和任务,调用大模型 LLM来生成任务结果。

  • Task Creation Agent 使用大模型LLM 根据目标和前一个任务的结果创建新任务。它的输入是:目标,前一个任务的结果,任务描述和当前任务列表。

  • Prioritization Agent 使用大模型LLM对任务列表进行重新排序。它接受一个参数:当前任务的 ID

Agent的创建与Action的定义我们已经练习过很多次了,应该比较熟练了。个人认为用MetaGPT重构BabyAGI的主要思考点在于:

(1)怎么组织数据流,Agent需要的信息是什么
(2)怎么打通数据流,Agent间的消息如何传递
(3)一些公共的数据怎么存储,例如 objective目标、task列表

上面这三个思考点实现思路都很简单,但想调出通用性强且效果好的最终应用,比较难。下面的思考仅为各位读者提供思路,具体效果的优化需要慢慢调。

1. 编写代码

1.1 Task Creation Agent

1.1.1 Action定义

原 BabyAGI 是给定一个初始任务,先执行任务,然后再执行 TaskCreatio

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

同学小张

如果觉得有帮助,欢迎给我鼓励!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值