书生大模型实战营闯关记录----第五关:LlamaIndex+Internlm2 RAG实践Demo:效果对比,文档加载,向量库构建,检索器,模型推理

本文将分为以下几个部分来介绍,如何使用 LlamaIndex 来部署 InternLM2 1.8B并实现RAG功能。

  • 前置知识
  • 环境、模型准备
  • LlamaIndex HuggingFaceLLM
  • LlamaIndex RAG

1. 前置知识

RAG背景

给模型注入新知识的方式,可以简单分为两种方式,一种是内部的,即更新模型的权重,另一个就是外部的方式,给模型注入格外的上下文或者说外部信息,不改变它的的权重。
第一种方式,改变了模型的权重即进行模型训练,这是一件代价比较大的事情,大语言模型具体的训练过程,可以参考InternLM2技术报告。第二种方式,并不改变模型的权重,只是给模型引入额外的信息。
在这里插入图片描述
在这里插入图片描述

对比两种注入知识方式,第二种更容易实现。RAG正是这种方式。它能够让基础模型实现非参数知识更新,无需训练就可以掌握新领域的知识。本次课程选用了LlamaIndex框架。LlamaIndex 是一个上下文增强的 LLM 框架,旨在通过将其与特定上下文数据集集成,增强大型语言模型(LLMs)的能力。它允许您构建应用程序,既利用 LLMs 的优势,又融入您的私有或领域特定信息。

在RAG中有五个关键阶段,这些阶段将成为你构建的任何更大应用程序的一部分。这些阶段包括:

  • 加载:这指的是从数据源(无论是文本文件、PDF、另一个网站、数据库或API)获取你的数据并将其放入你的流水线中。LlamaHub 提供了数百个可供选择的连接器。

  • 索引:这意味着创建一个允许查询数据的数据结构。对于LLM来说,这几乎总是意味着创建向量嵌入,即你的数据含义的数值表示,以及许多其他元数据策略,使其易于准确找到上下文相关的数据。

  • 存储:一旦你的数据被索引,你几乎总是希望存储你的索引,以及其他元数据,以避免重新对其进行索引。

  • 查询:对于任何给定的索引策略,你可以利用LLM和LlamaIndex数据结构进行查询的许多方式,包括子查询、多步查询和混合策略。

  • 评估:在任何流水线中的一个关键步骤是检查它相对于其他策略的有效性,或者当你进行更改时。评估提供了关于你对查询的响应有多准确、忠实和快速的客观度量。

RAG 效果比对

如图所示,由于xtuner是一款比较新的框架, InternLM2-Chat-1.8B 训练数据库中并没有收录到它的相关信息。左图中问答均未给出准确的答案。右图未对 InternLM2-Chat-1.8B 进行任何增训的情况下,通过 RAG 技术实现的新增知识问答。
在这里插入图片描述

2. 环境、模型准备

2.1 配置基础环境

这里以在 Intern Studio 服务器上部署LlamaIndex为例。

进入开发机后,创建新的conda环境,命名为 llamaindex,在命令行模式下运行:

conda create -n llamaindex python=3.10

复制完成后,在本地查看环境。

conda env list

结果如下所示。

# conda environments:
#
base                  *  /root/.conda
llamaindex               /root/.conda/envs/llamaindex

运行 conda 命令,激活 llamaindex 然后安装相关基础依赖
python 虚拟环境:

conda activate llamaindex
conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia

安装python 依赖包

pip install einops
pip install  protobuf

环境激活。

2.2 安装 Python环境和依赖包

安装Python3.10版本的Anaconda虚拟环境和相关的包

conda create -n llamaindex python=3.10
conda activate llamaindex
conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia
pip install einops
pip install  protobuf
pip install llama-index==0.10.38 llama-index-llms-huggingface==0.2.0 "transformers[torch]==4.41.1" "huggingface_hub[inference]==0.23.1" huggingface_hub==0.23.1 sentence-transformers==2.7.0 sentencepiece==0.2.0

2.3 下载 Sentence Transformer 模型

源词向量模型 Sentence Transformer:(我们也可以选用别的开源词向量模型来进行 Embedding,目前选用这个模型是相对轻量、支持中文且效果较好的,同学们可以自由尝试别的开源词向量模型)
运行以下指令,新建一个python文件,贴入以下代码
然后,执行该脚本即可自动开始下载:

cd /root/llamaindex_demo
conda activate llamaindex
python download_hf.py

更多关于镜像使用可以移步至 HF Mirror 查看。

2.4 下载 NLTK 相关资源

我们在使用开源词向量模型构建开源词向量的时候,需要用到第三方库 nltk 的一些资源。正常情况下,其会自动从互联网上下载,但可能由于网络原因会导致下载中断,此处我们可以从国内仓库镜像地址下载相关资源,保存到服务器上。
我们用以下命令下载 nltk 资源并解压到服务器上:

### Ollama + DeepSeek-R1:32B + Docker + RAG Flow/Open WebUI 本地部署 #### 简介 DeepSeek是由阿里云推出的大型语言模型,而`DeepSeek-R1:32B`是指该系列的一个特定版本,拥有约320亿参数规模。为了方便用户使用这个强大的模型,可以通过Docker容器化技术以及RAG (Retrieval-Augmented Generation) 流程来进行本地环境下的快速部署。 #### 部署步骤概述 1. **安装Docker**:如果你还没有安装Docker的话,则需要先下载并按照官方指南完成其设置过程; - [Docker官网](https://www.docker.com/) 2. **获取镜像文件**: 使用Ollama提供的命令行工具或者直接从仓库拉取包含有预训练权重和其他必要组件的docker image ```bash docker pull ollama/deepseek-r1:32b # 假设这是正确的标签名称 ``` 3. **配置数据集与索引构建**: 对于想要增强生成结果准确性的场景来说,在启动之前还需要准备相应的文本资料库,并通过一些额外脚本创建搜索索引来支持检索增强功能(Retrieve Augment Generate)。 4. **运行Web UI服务端口映射等选项自定义** 根据个人需求调整命令参数如开放HTTP访问地址、设定内存限制等等。 ```bash docker run --name my_deepseek_webui -p 7860:7860 ollama/deepseek-webui:latest ``` 5. **打开浏览器连接至localhost指定端口号即可开始体验** 以上即是在个人电脑上搭建基于ollama平台发布的deepseek大模型加web界面交互的整体流程简介。 --- 需要注意的是实际操作过程中可能会遇到各种问题比如依赖项冲突或者是硬件资源不足等问题,建议参考具体产品的文档说明进一步排查解决办法。 --
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值