主题: llamaindex+Internlm2 RAG实践
基础任务(完成此任务即完成闯关)
- 任务要求:基于 LlamaIndex 构建自己的 RAG 知识库,寻找一个问题 A 在使用 LlamaIndex 之前InternLM2-Chat-1.8B模型不会回答,借助 LlamaIndex 后 InternLM2-Chat-1.8B 模型具备回答 A 的能力,截图保存。
1.创建开发机
打开InternStudio平台,创建开发机。填写开发机名称;选择镜像Cuda11.7-conda;选择30% A100 * 1;点击“立即创建”。
2.环境模型配置
2.1 创建虚拟环境:
# 创建虚拟环境
conda create -n llamaindex python=3.10
2.2 激活虚拟环境 然后安装相关基础依赖 python 虚拟环境::
conda activate langgpt
conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia
2.3 安装Python依赖包,依次运行下面的命令:
pip install einops
pip install protobuf
2.4 安装 Llamaindex
安装 Llamaindex和相关的包
conda activate llamaindex
pip install llama-index==0.10.38 llama-index-llms-huggingface==0.2.0 "transformers[torch]==4.41.1" "huggingface_hub[inference]==0.23.1" huggingface_hub==0.23.1 sentence-transformers==2.7.0 sentencepiece==0.2.0
2.5 下载 Sentence Transformer 模型
源词向量模型 Sentence Transformer:(我们也可以选用别的开源词向量模型来进行 Embedding,目前选用这个模型是相对轻量、支持中文且效果较好的,同学们可以自由尝试别的开源词向量模型) 运行以下指令,新建一个python文件
cd ~
mkdir llamaindex_demo
mkdir model
cd ~/llamaindex_demo
touch download_hf.py
打开download_hf.py 贴入以下代码
import os
# 设置环境变量
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
# 下载模型
os.system('huggingface-cli download --resume-download sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --local-dir /root/model/sentence-transformer')
然后,在 /root/llamaindex_demo 目录下执行该脚本即可自动开始下载:
cd /root/llamaindex_demo
conda activate llamaindex
python download_hf.py
2.6 下载 NLTK 相关资源
我们在使用开源词向量模型构建开源词向量的时候,需要用到第三方库 nltk 的一些资源。正常情况下,其会自动从互联网上下载,但可能由于网络原因会导致下载中断,此处我们可以从国内仓库镜像地址下载相关资源,保存到服务器上。 我们用以下命令下载 nltk 资源并解压到服务器上:
cd /root
git clone https://gitee.com/yzy0612/nltk_data.git --branch gh-pages
cd nltk_data
mv packages/* ./
c