Crowd Behavior Analysis Using Local Mid-Level Visual Descriptors

本文提出了一种通过丰富视觉描述符量化人群属性的方法。利用新颖的空间时间模型捕捉人群动态变化,并采用Delaunay三角剖分近似邻域交互。人群被表示为随时间演化的图,节点对应轨迹片段。从中提取中层表示来确定正在进行的人群行为。所提描述符在人群视频分类、异常检测及暴力检测应用中表现出有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Abstract:
Crowd behavior analysis has recently emerged as an increasingly important and dedicated problem for crowd monitoring and management in the visual surveillance community. In particular, it is receiving a lot of attention to detect potentially dangerous situations and to prevent overcrowdedness. In this paper, we propose to quantify crowd properties by a rich set of visual descriptors. The calculation of these descriptors is realized through a novel spatio-temporal model of the crowd. It consists of modeling time-varying dynamics of the crowd using local feature tracks. It also involves a Delaunay triangulation to approximate neighborhood interactions. In total, the crowd is represented as an evolving graph, where the nodes correspond to the tracklets. From this graph, various mid-level representations are extracted to determine the ongoing crowd behaviors. In particular, the effectiveness of the proposed visual descriptors is demonstrated within three applications: crowd video classification, anomaly detection, and violence detection in crowds. The obtained results on videos from different data sets prove the relevance of these visual descriptors to crowd behavior analysis. In addition, by means of comparisons to other existing methods, we demonstrate that the proposed descriptors outperform the state-of-the-art methods with a significant margin using the most challenging data sets.
Published in:  IEEE Transactions on Circuits and Systems for Video Technology  Volume: 27Issue: 3, March 2017 )
Page(s): 589  - 602
Date of Publication: 05 October 2016 
 ISSN Information:
 
INSPEC Accession Number: 16721924
Publisher: IEEE
Funding Agency:  Research Project Fluid-Tracks co-funded by French FUI-BPI France and the Conseil Général de Seine et Marne
资源下载链接为: https://pan.quark.cn/s/67c535f75d4c 在机器人技术中,轨迹规划是实现机器人从一个位置平稳高效移动到另一个位置的核心环节。本资源提供了一套基于 MATLAB 的机器人轨迹规划程序,涵盖了关节空间和笛卡尔空间两种规划方式。MATLAB 是一种强大的数值计算与可视化工具,凭借其灵活易用的特点,常被用于机器人控制算法的开发与仿真。 关节空间轨迹规划主要关注机器人各关节角度的变化,生成从初始配置到目标配置的连续路径。其关键知识点包括: 关节变量:指机器人各关节的旋转角度或伸缩长度。 运动学逆解:通过数学方法从末端执行器的目标位置反推关节变量。 路径平滑:确保关节变量轨迹连续且无抖动,常用方法有 S 型曲线拟合、多项式插值等。 速度和加速度限制:考虑关节的实际物理限制,确保轨迹在允许的动态范围内。 碰撞避免:在规划过程中避免关节与其他物体发生碰撞。 笛卡尔空间轨迹规划直接处理机器人末端执行器在工作空间中的位置和姿态变化,涉及以下内容: 工作空间:机器人可到达的所有三维空间点的集合。 路径规划:在工作空间中找到一条从起点到终点的无碰撞路径。 障碍物表示:采用二维或三维网格、Voronoi 图、Octree 等数据结构表示工作空间中的障碍物。 轨迹生成:通过样条曲线、直线插值等方法生成平滑路径。 实时更新:在规划过程中实时检测并避开新出现的障碍物。 在 MATLAB 中实现上述规划方法,可以借助其内置函数和工具箱: 优化工具箱:用于解决运动学逆解和路径规划中的优化问题。 Simulink:可视化建模环境,适合构建和仿真复杂的控制系统。 ODE 求解器:如 ode45,用于求解机器人动力学方程和轨迹执行过程中的运动学问题。 在实际应用中,通常会结合关节空间和笛卡尔空间的规划方法。先在关节空间生成平滑轨迹,再通过运动学正解将关节轨迹转换为笛卡
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值