
paper reading
文章平均质量分 79
算法学习者
计算机各种知识学习笔记
展开
-
FASHION DNA: STRUCTURAL FEATURE MAPPING IN THE WORLD OF RETAIL
Image source: Zalando ResearchWhen applying artificial intelligence to the world of fashion, in which the clothing and other articles involved have many varying individual properties, a meaningful转载 2017-05-26 16:00:39 · 859 阅读 · 0 评论 -
强化学习族谱
https://github.com/tigerneil/deep-reinforcement-learning-familydeep-reinforcement-learning-recordsExplicitly show the relationships between various techniques of deep reinforcement learn转载 2017-06-18 02:01:17 · 1255 阅读 · 0 评论 -
学界 | Yann LeCun最新研究成果:可以帮助GAN使用离散数据的ARAE
AI 科技评论消息,Facebook人工智能研究中心FAIR负责人、深度学习三驾马车之一的Yann LeCun昨天在Facebook上评论转发了一条动态。Yann LeCun转发的这条动态来自跟他合作的一位纽约大学在读博士生Jake Zhao,介绍了一篇已经上传arXiv的论文。论文介绍了一种可以帮助GAN使用离散数据的“对抗性正则化的自动编码器”(ARAE,Adversarially Regul转载 2017-06-18 02:06:00 · 1432 阅读 · 0 评论 -
【简评】Loss Max-Pooling for Semantic Image Segmentation
https://zhuanlan.zhihu.com/p/27394105【简评】Loss Max-Pooling for Semantic Image Segmentationycszen3 天前这篇文章已经被CVPR2017收录,思想很明确,但是进行了很多数学证明,奈何数学功底不够啊,所以欢迎多多讨论交流。本文主要解决的是semantic seg转载 2017-06-18 01:52:54 · 1534 阅读 · 0 评论 -
论文|谷歌推出最新“手机版”视觉应用的卷积神经网络—MobileNets
全球人工智能文章来源:arxiv.org 翻译:林一鸣文章投稿:news@top25.cnMobileNets: 面向手机视觉的高性能卷积网络摘要我们提供一类称为MobileNets的高效模型,用于移动和嵌入式视觉应用。 MobileNets是基于一个流线型的架构,它使用深度可分离的卷积来构建轻量级的深层神经网络。我们引入两个简单的全局超参数,在延迟转载 2017-06-18 15:56:40 · 3121 阅读 · 0 评论 -
Warp-CTC
https://github.com/baidu-research/warp-ctc/blob/master/README.zh_cn.mdWarp-CTC是一个可以应用在CPU和GPU上高效并行的CTC代码库 (library) 介绍 CTCConnectionist Temporal Classification作为一个损失函数,用于在序列数据上进行监督式学习,不需要对齐输入数据及转载 2017-06-18 17:08:08 · 6336 阅读 · 2 评论 -
CVPR 2017 Abstracts Collection
https://github.com/MichaelLiang12/CVPR-2017-Abstracts-Collection/blob/master/CVPR2017_Abstract_Collection.mdCVPR 2017 Abstracts CollectionCollection of CVPR 2017, including titles, lin转载 2017-07-11 12:58:36 · 37053 阅读 · 0 评论 -
Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding
Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual GroundingAkira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach, Trevor Darrell, Marcus Rohrbach(Submitted on 6转载 2017-06-11 09:42:30 · 1445 阅读 · 0 评论 -
Video Captioning with Multi-Faceted Attention
Video Captioning with Multi-Faceted AttentionXiang Long, Chuang Gan, Gerard de Melo(Submitted on 1 Dec 2016)Recently, video captioning has been attracting an increasing amount of interes转载 2017-06-11 09:58:45 · 1198 阅读 · 0 评论 -
缺少灵感?你一定需要这8篇论文 | 本周值得读 #37
缺少灵感?你一定需要这8篇论文 | 本周值得读 #3714小时前阅读1 「本周值得读」是 PaperWeekly 的优质文章集合地。在这里,来自 NLP、CV、DL 等方向的学习达人,各自用精炼妙语推荐当下最新的高质量文章。 这是第 37篇「本周值得读」➊#ICML#On orthogonality and learning recurrent转载 2017-06-17 21:49:21 · 922 阅读 · 0 评论 -
Multimodal Word Distributions
Multimodal Word DistributionsBen Athiwaratkun, Andrew Gordon Wilson(Submitted on 27 Apr 2017)Word embeddings provide point representations of words containing useful semantic information转载 2017-06-17 21:46:11 · 1014 阅读 · 0 评论 -
Computer Vision for Autonomous Vehicles: Problems, Datasets and State-of-the-Art
Computer Vision for Autonomous Vehicles: Problems, Datasets and State-of-the-ArtJoel Janai, Fatma Güney, Aseem Behl, Andreas Geiger(Submitted on 18 Apr 2017)Recent years have witnessed a转载 2017-05-20 23:43:16 · 1535 阅读 · 0 评论 -
Exploring Sparsity in Recurrent Neural Networks
Exploring Sparsity in Recurrent Neural NetworksSharan Narang, Gregory Diamos, Shubho Sengupta, Erich Elsen(Submitted on 17 Apr 2017)Recurrent Neural Networks (RNN) are widely used to sol转载 2017-05-26 16:02:29 · 1100 阅读 · 0 评论 -
CIDEr: Consensus-based Image Description Evaluation
CIDEr: Consensus-based Image Description EvaluationRamakrishna Vedantam, C. Lawrence Zitnick, Devi Parikh(Submitted on 20 Nov 2014 (v1), last revised 3 Jun 2015 (this version, v2))Automa转载 2017-05-17 01:38:48 · 2031 阅读 · 0 评论 -
BLEU : 一种机器翻译自动评价方法
BLEU : 一种机器翻译自动评价方法BLEU:a Method for Automatic Evaluation of Machine Translation(1) Kishore Papineni,Salim Roukos,Todd Ward, and Wei-Jing Zhu编译: 洪洁 文章来源:多语工程技术研究中心《云翻译技术》第12期 摘要:这篇论文是关于BLE转载 2017-05-17 15:17:21 · 9058 阅读 · 1 评论 -
Adversarial Neural Machine Translation
https://arxiv.org/abs/1704.06933Lijun Wu, Yingce Xia, Li Zhao, Fei Tian, Tao Qin, Jianhuang Lai, Tie-Yan Liu(Submitted on 20 Apr 2017)In this paper, we study a new learning paradigm转载 2017-04-28 00:39:56 · 6550 阅读 · 0 评论 -
WaveNet: A Generative Model for Raw Audio
WaveNet: A Generative Model for Raw AudioAaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, Koray Kavukcuoglu(转载 2017-05-10 17:13:05 · 7604 阅读 · 0 评论 -
Convolutional Sequence to Sequence Learning
Convolutional Sequence to Sequence LearningJonas Gehring, Michael Auli, David Grangier, Denis Yarats, Yann N. Dauphin(Submitted on 8 May 2017)The prevalent approach to sequence to sequ转载 2017-05-10 17:14:32 · 8247 阅读 · 0 评论 -
Hierarchical Question-Image Co-Attention for Visual Question Answering
Hierarchical Question-Image Co-Attention for Visual Question AnsweringJiasen Lu, Jianwei Yang, Dhruv Batra, Devi Parikh(Submitted on 31 May 2016 (v1), last revised 19 Jan 2017 (this version,转载 2017-06-16 10:27:28 · 940 阅读 · 0 评论 -
Effective Approaches to Attention-based Neural Machine Translation
Abstract:An attentional mechanism has lately been used to improve neural machine translation (NMT) by selectively focusing on parts of the source sentence during translation. However, there has be转载 2017-05-20 17:08:01 · 1068 阅读 · 0 评论 -
Hierarchical Boundary-Aware Neural Encoder for Video Captioning
Hierarchical Boundary-Aware Neural Encoder for Video CaptioningLorenzo Baraldi, Costantino Grana, Rita Cucchiara(Submitted on 28 Nov 2016 (v1), last revised 10 Apr 2017 (this version, v3))转载 2017-06-11 10:00:17 · 850 阅读 · 0 评论 -
Video Captioning with Transferred Semantic Attributes
Video Captioning with Transferred Semantic AttributesYingwei Pan, Ting Yao, Houqiang Li, Tao Mei(Submitted on 23 Nov 2016)Automatically generating natural language descriptions of videos转载 2017-06-11 10:02:34 · 1190 阅读 · 0 评论 -
Multimodal Memory Modelling for Video Captioning
Multimodal Memory Modelling for Video CaptioningJunbo Wang, Wei Wang, Yan Huang, Liang Wang, Tieniu Tan(Submitted on 17 Nov 2016)Video captioning which automatically translates video cli转载 2017-06-11 10:05:59 · 1085 阅读 · 0 评论 -
Dynamic Memory Networks for Visual and Textual Question Answering
Dynamic Memory Networks for Visual and Textual Question AnsweringCaiming Xiong, Stephen Merity, Richard Socher(Submitted on 4 Mar 2016)Neural network architectures with memory and attent转载 2017-08-28 11:02:38 · 1070 阅读 · 0 评论 -
计算机顶级会议Rankings && 英文投稿的一点经验
英文投稿的一点经验【转载】From: http://chl033.woku.com/article/2893317.html1. 首先一定要注意杂志的发表范围, 超出范围的千万别投,要不就是浪费时间;另外,每个杂志都有他们的具体格式要求,一定要按照他们的要求把论文写好,免得浪费时间,前些时候,我的一个同事向一个著名的英文杂志投稿,由于格式问题,人家过两个星期就退回来了,而且说了很多转载 2017-09-06 15:47:34 · 18072 阅读 · 0 评论 -
Fluency-Guided Cross-Lingual Image Captioning
Fluency-Guided Cross-Lingual Image CaptioningWeiyu Lan, Xirong Li, Jianfeng Dong(Submitted on 15 Aug 2017)Image captioning has so far been explored mostly in English, as most available d转载 2017-08-29 12:02:04 · 885 阅读 · 0 评论 -
Deep Learning based Recommender System: A Survey and New Perspectives
Deep Learning based Recommender System: A Survey and New PerspectivesShuai Zhang, Lina Yao, Aixin Sun(Submitted on 24 Jul 2017 (v1), last revised 3 Aug 2017 (this version, v5))With the e转载 2017-09-26 14:05:57 · 1330 阅读 · 0 评论 -
Semantic Compositional Networks for Visual Captioning
Semantic Compositional Networks for Visual CaptioningZhe Gan, Chuang Gan, Xiaodong He, Yunchen Pu, Kenneth Tran, Jianfeng Gao, Lawrence Carin, Li Deng(Submitted on 23 Nov 2016 (v1), last r转载 2017-10-09 11:55:33 · 1280 阅读 · 0 评论 -
Deep Reinforcement Learning-based Image Captioning with Embedding Reward
Deep Reinforcement Learning-based Image Captioning with Embedding RewardZhou Ren, Xiaoyu Wang, Ning Zhang, Xutao Lv, Li-Jia Li(Submitted on 12 Apr 2017)Image captioning is a challenging转载 2017-10-09 11:58:16 · 1056 阅读 · 0 评论 -
Captioning Images with Diverse Objects
Captioning Images with Diverse ObjectsSubhashini Venugopalan, Lisa Anne Hendricks, Marcus Rohrbach, Raymond Mooney, Trevor Darrell, Kate Saenko(Submitted on 24 Jun 2016 (v1), last revise转载 2017-10-09 11:58:38 · 985 阅读 · 0 评论 -
GENERATIVE ADVERSARIAL NETWORKS FOR IMAGE STEGANOGRAPHY
Steganography is collection of methods to hide secret information (“payload”) within non-secret information (“container”). Its counterpart, Steganalysis, is the practice of determining if a message co转载 2017-10-27 22:15:45 · 1373 阅读 · 0 评论 -
Dynamic Coattention Networks For Question Answering
Dynamic Coattention Networks For Question AnsweringCaiming Xiong, Victor Zhong, Richard Socher(Submitted on 5 Nov 2016 (v1), last revised 13 Feb 2017 (this version, v3))Several deep lear转载 2017-09-04 10:42:10 · 1422 阅读 · 0 评论 -
Awesome - Most Cited Deep Learning Papers
https://github.com/terryum/awesome-deep-learning-papersAwesome - Most Cited Deep Learning PapersA curated list of the most cited deep learning papers (since 2012)We believe that th转载 2017-06-11 11:03:22 · 1008 阅读 · 0 评论 -
Dense-Captioning Events in Videos
Dense-Captioning Events in VideosRanjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, Juan Carlos Niebles(Submitted on 2 May 2017)Most natural videos contain numerous events. For exam转载 2017-06-11 10:19:38 · 1279 阅读 · 0 评论 -
Spatio-Temporal Attention Models for Grounded Video Captioning
Spatio-Temporal Attention Models for Grounded Video CaptioningMihai Zanfir, Elisabeta Marinoiu, Cristian Sminchisescu(Submitted on 17 Oct 2016 (v1), last revised 18 Oct 2016 (this version, v转载 2017-06-11 10:08:32 · 1226 阅读 · 0 评论 -
End-to-end Concept Word Detection for Video Captioning, Retrieval, and Question Answering
End-to-end Concept Word Detection for Video Captioning, Retrieval, and Question AnsweringYoungjae Yu, Hyungjin Ko, Jongwook Choi, Gunhee Kim(Submitted on 10 Oct 2016 (v1), last revised 13 De转载 2017-06-11 10:09:52 · 1329 阅读 · 0 评论 -
Deep Learning for Video Classification and Captioning
Deep Learning for Video Classification and CaptioningZuxuan Wu, Ting Yao, Yanwei Fu, Yu-Gang Jiang(Submitted on 22 Sep 2016)Accelerated by the tremendous increase in Internet bandwidth a转载 2017-06-11 10:11:48 · 1676 阅读 · 0 评论 -
Frame- and Segment-Level Features and Candidate Pool Evaluation for Video Caption Generation
Frame- and Segment-Level Features and Candidate Pool Evaluation for Video Caption GenerationRakshith Shetty, Jorma Laaksonen(Submitted on 17 Aug 2016)We present our submission to the Micro转载 2017-06-11 10:13:06 · 1090 阅读 · 0 评论 -
Beyond Caption To Narrative: Video Captioning With Multiple Sentences
Beyond Caption To Narrative: Video Captioning With Multiple SentencesAndrew Shin, Katsunori Ohnishi, Tatsuya Harada(Submitted on 18 May 2016)Recent advances in image captioning task have转载 2017-06-11 10:15:05 · 743 阅读 · 0 评论 -
Video captioning with recurrent networks based on frame- and video-level features and visual content
Video captioning with recurrent networks based on frame- and video-level features and visual content classificationRakshith Shetty, Jorma Laaksonen(Submitted on 9 Dec 2015)In this paper, w转载 2017-06-11 10:16:40 · 829 阅读 · 0 评论