不能与直系上司同时参加聚会求最大人数 有根树形DP 最大独立集 poj 3342

本文采用动态规划(DP)算法解决如何邀请员工参加聚会,确保没有员工与其直接上级同时出席的问题,通过输入员工数量、组织层级关系,输出最大可邀请员工数及邀请方案是否唯一。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://poj.org/problem?id=3342

Party at Hali-Bula
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 5793 Accepted: 2068

Description

Dear Contestant,

I'm going to have a party at my villa at Hali-Bula to celebrate my retirement from BCM. I wish I could invite all my co-workers, but imagine how an employee can enjoy a party when he finds his boss among the guests! So, I decide not to invite both an employee and his/her boss. The organizational hierarchy at BCM is such that nobody has more than one boss, and there is one and only one employee with no boss at all (the Big Boss)! Can I ask you to please write a program to determine the maximum number of guests so that no employee is invited when his/her boss is invited too? I've attached the list of employees and the organizational hierarchy of BCM.

Best,
--Brian Bennett

P.S. I would be very grateful if your program can indicate whether the list of people is uniquely determined if I choose to invite the maximum number of guests with that condition.

Input

The input consists of multiple test cases. Each test case is started with a line containing an integer n (1 ≤ n ≤ 200), the number of BCM employees. The next line contains the name of the Big Boss only. Each of the following n-1 lines contains the name of an employee together with the name of his/her boss. All names are strings of at least one and at most 100 letters and are separated by blanks. The last line of each test case contains a single 0.

Output

For each test case, write a single line containing a number indicating the maximum number of guests that can be invited according to the required condition, and a word Yes or No, depending on whether the list of guests is unique in that case.

Sample Input

6
Jason
Jack Jason
Joe Jack
Jill Jason
John Jack
Jim Jill
2
Ming
Cho Ming
0

Sample Output

4 Yes
1 No

Source

[Submit]   [Go Back]   [Status]   [Discuss]

题目大意:某公司有个聚会,要邀请员工来参加。要求员工和他的直系上司不能同时到这个聚会,问最多能邀请到多少人,有多种邀请方法时输出No

DP过程

注意:对于每个矛盾关系,从老板向员工连一条边

dp[i][0]表示不取i的最大值,可以由两个状态转移而来dp[i][0]+=sigma[ max(dp[j][0],dp[j][1])],j为儿子,即儿子取或不取都可以

dp[i][1]表示取i的最大值,初始值赋为1,那么儿子节点就不能取了,所以dp[i][1]=sigma(dp[j][0]);

 

 

判断方案是否唯一

 

观察状态转移的过程可知:dp[i][0]是由dp[j][0],dp[j][1]两个状态过来的,所以当dp[j][0]==dp[j][1]时,方案不唯一,即子节点选与不选都可以

但是注意前提是dp[i][0]更优与dp[i][1],即i这个节点肯定被选择了,否则状态就仅仅由dp[j][1]转移而来,不能判断不唯一。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<string>
#include<map>
using namespace std;
#define max(a,b) a>b?a:b
const int maxn  =  201;
vector<int> edge[maxn];
int dp[210][2];
void dfs(int u,int p)
{
    int i,j;
    dp[u][1]=1;
    dp[u][0]=0;
    for(i=0;i<edge[u].size();i++)
    {
        int v=edge[u][i];
        if(v==p) continue;
        dfs(v,u);
        dp[u][1]+=dp[v][0];
        dp[u][0]+=max(dp[v][0],dp[v][1]);
    }
}
int main(){
     map<string,int> mm;
     int n,i,tot;
     char bos[110],a[110],b[110];
     while(scanf("%d",&n),n)
     {
         tot=0;
         for(i=0;i<=200;i++) edge[i].clear();
         mm.clear();
         scanf("%s",bos);mm[bos]=tot++;
         for(i=0;i<n-1;i++)
         {
             scanf("%s%s",a,b);
             if(mm.find(a)==mm.end()) mm[a]=tot++;
             if(mm.find(b)==mm.end()) mm[b]=tot++;
             edge[mm[b]].push_back(mm[a]);
         }
         dfs(0,0);bool flag=true;
         for(i=0;i<n;i++)
         {
             flag=true;
             if(dp[i][0]>dp[i][1])
             {
                 for(int j=0;j<edge[i].size();j++)
                 {
                     if(dp[edge[i][j]][0]==dp[edge[i][j]][1])
                     {
                         flag=false;
                         break;
                     }
                 }
             }
             if(!flag) break;
         }
         printf("%d",max(dp[0][0],dp[0][1]));
         if(dp[0][0]==dp[0][1]||!flag) printf(" No\n");
         else printf(" Yes\n");
     }
     return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值