
矩阵论
文章平均质量分 75
zzyczzyc
越努力越幸运
展开
-
矩阵乘法
矩阵乘法-看成对右边的矩阵行变换原创 2018-10-16 19:38:33 · 272 阅读 · 0 评论 -
Symmetric Matrices
原创 2018-12-17 20:09:42 · 242 阅读 · 0 评论 -
Positive Definite Matrices
原创 2018-12-27 22:11:29 · 297 阅读 · 0 评论 -
The Application of Eigenvectors and Eigenvalues to Differential Equations
文章目录微分方程的数学背景微分方程的数学背景二阶常系数齐次线性微分方程:y′′+py′+qy=0y^{''}+py^{'}+qy=0y′′+py′+qy=0p、q 是常数:这是常系数微分方程;不是常数:变系数微分方程当 r 为常数的时候,指数函数erxe^{rx}erx和它的各阶derivative都只差一个常数因子。所以,我们用...原创 2018-12-01 16:14:32 · 202 阅读 · 0 评论 -
Eigenvalues And Eigenvectors
文章目录The Definition of Eigenvalues and EigenvectorsDiagonalizing MatrixThe application to Differential equationsBackground fo differential equationsThe Definition of Eigenvalues and EigenvectorsDi...原创 2018-11-29 11:47:15 · 1856 阅读 · 0 评论 -
Determinants
The Properties Of Determinants行列式的表示: det AAA 或者 |AAA| 1. n by n 的单位阵的行列式是1∣10⋯001⋯0⋮⋮⋱⋮00⋯1∣=1 \left| \begin{matrix} 1 & 0 & \cdots & 0 \\0 & 1原创 2018-11-23 20:28:13 · 991 阅读 · 0 评论 -
Orthogonality and Projection
文章目录Orthogonality of the four subspacesDefinition of orthogonal subspaceDefinition of orthogonal complements(正交补)ProjectionsProjection onto a lineOrthogonality of the four subspacesThe row space i...原创 2018-11-12 17:19:54 · 453 阅读 · 0 评论 -
Least squres(最小二乘法)
Least SquaresA=QRQ是由A得到的一组标准正交基,那么A可以由Q乘以一个矩阵得到 上述表明:a 是由 linear combination of q1 构成b 是由 linear combination of q1、q2构成c 是由 linear combination of q1、q2、q3 构成Any m by n matrix A with indepen...原创 2018-11-12 22:16:29 · 498 阅读 · 0 评论 -
Subspace And All Solutions to Ax=b
SubspaceThe Definition Of SubspaceA subspace of a vector space is a set of vectors (including 0) that satisfied two requirments: if www and vvv are verctor in the subspace and ccc is any sclar,th...原创 2018-10-31 16:36:46 · 218 阅读 · 0 评论 -
Graph and Networks
DescriptionA Graph consists of a set of nodes, and a set of edges that connect themExamplesThe graph below has 4 nodes and 5 edgesThe Graph above can be expressed by matrix as this :A=[−...原创 2018-10-24 16:05:46 · 252 阅读 · 0 评论 -
Inverse Matrices
文章目录DEFINITIONIMPORTANT NOTESDEFINITIONThe matrix A is invertible if there exists a matrix A−1A^{-1}A−1 that allows(1)A−1A=I  and  AA−1=IA^{-1}A=I\space \space an原创 2018-10-20 20:14:40 · 391 阅读 · 0 评论 -
求A^K 和e^A
AkA^kAkeAe^AeA原创 2019-01-25 10:57:37 · 1855 阅读 · 0 评论