Orthogonality and Projection

本文探讨了矩阵空间中四个子空间的正交性,解释了正交子空间和正交补的概念。此外,详细阐述了投影理论,包括在直线和平面上的投影,以及正交基在投影中的作用。通过Gram-Schmidt过程展示了如何将非正交基转化为正交基,并介绍了正交矩阵及其在投影矩阵中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Orthogonality of the four subspaces

在这里插入图片描述

  • The row space is perpendicular to the nullspace
  • The column space is perpendicular to the nullspace of A T A^T AT

  • The column space C(A) , a subspace of R m R^m Rm, dimention r
  • The leftnull space N( A T A^T AT) , a subspace of R m R^m Rm ,dimention m-r
  • The row space C( A T A^T AT) , a subspace of R n R^n Rn ,dimention r
  • The null space N(A) , a subspace of R n R^n Rn ,dimention n-r

Definition of orthogonal subspace

  • Two subspace V V V and W W W of a vector space are orthogonal if every vector v v v in V V V is perpendicular to every vector w w w in W W W

  • Every vector x in the nullspace is perpendicular to every row of A A A, because A x = 0 Ax=0 Ax=0 ,the nullspace N ( A ) N(A) N(A) and row space C ( A T ) C(A^T) C(AT) are orthogonal subspace of R n R^n Rn
  • Every vector y y y in the nullspace of A T A^T AT is perpendicular to every column of A A A, because A T x = 0 A^Tx=0 ATx=0 , ,The leftnull space N( A T A^T AT) and the column space C(A) are orthogonal in R m R^m Rm


Definition of orthogonal complements(正交补)

  • The orthogonal complement of a subspace V V V contains every vector that is perpendicular to V V V

  • Nullspace N(A) is the orthogonal complement of the row space C( A T A^T AT) in R n R^n Rn
  • LeftNull space N( A T A^T AT) is the orthogonal complement of the column space C(A) in R m R^m Rm


Projections

  • The projection matrix P(由A得到投影矩阵) multiplies b(被投影的向量) to give p (b在A上的投影) on A

Projection onto a line

在这里插入图片描述

projection matrix : P = a a T a T a P=\frac{aa^T}{a^Ta} P=aTaaaT

例子:
在这里插入图片描述


Projection onto a subspace

在这里插入图片描述
在这里插入图片描述

( I − P ) b = e (I-P)b=e (IP)b=e : I − P I-P IP 也是投影矩阵,将b 投影到 plane perpendicular to A to get e

实例
在这里插入图片描述


Orthogonal bases and Gram-Schmidt

Orthonomal bases and matrix(标准正交基、正交矩阵)

  • 标准正交基
    - Definition:

  • (orthogonal matrix)正交矩阵:方阵

由上面标准正交基构成的方阵:正交矩阵
在这里插入图片描述

the inverse is the transpose , In the square case we call Q an orthogonal matrix



Projection Using Orthonormal Bases:Q replace A

  • Suppose the basis are orthonomal. that means A is Q , A T A A^TA ATA is Q T Q = I Q^TQ=I QTQ=I
    投影向量: p = Q x ^ = Q Q T b p=Q\hat{x}=QQ^Tb p=Qx^=QQTb
    x ^ = Q T b \hat{x}=Q^Tb x^=QTb
    projection matrix: P = Q Q T P=QQ^T P=QQT

在这里插入图片描述


  • When Q is square m=n , (subspace Q is whole space, 任何一个向量投影到整个整个空间,都是其本身,所以投影矩阵是 I I I)
    Q T = Q − 1 Q^T=Q^{-1} QT=Q1
    x ^ = Q − 1 b \hat{x}=Q^{-1}b x^=Q1b
    projection matrix: P = Q Q T = I P=QQ^T=I P=QQT=I

The Gram-Schmidt

  • 假设 a , b , c a,b,c a,b,c三个向量不是标准正交基, 转化成正交基(基的长度不是1) A , B , C A,B,C A,B,C
  • 第一步:选 A = a A=a A=a B = b − A T b A T A A = e ( 误 差 ) B=b-\frac{A^Tb}{A^TA}A=e(误差) B=bATAATbA=e,因为b与A的误差是与A垂直的
  • 第二步: C = c − A T c A T A A − B T c B T B B C=c-\frac{A^Tc}{A^TA}A-\frac{B^Tc}{B^TB}B C=cATAATcABTBBTcB,取c 在 A , B A,B A,B平面投影的误差e
  • 重复下去

例子:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值