One way to serialize a binary tree is to use pre-order traversal. When we encounter a non-null node, we record the node's value. If it is a null node, we record using a sentinel value such as #
.
_9_ / \ 3 2 / \ / \ 4 1 # 6 / \ / \ / \ # # # # # #
For example, the above binary tree can be serialized to the string "9,3,4,#,#,1,#,#,2,#,6,#,#"
, where #
represents a null node.
Given a string of comma separated values, verify whether it is a correct preorder traversal serialization of a binary tree. Find an algorithm without reconstructing the tree.
Each comma separated value in the string must be either an integer or a character '#'
representing null
pointer.
You may assume that the input format is always valid, for example it could never contain two consecutive commas such as "1,,3"
.
Example 1:
"9,3,4,#,#,1,#,#,2,#,6,#,#"
Return true
Example 2:
"1,#"
Return false
Example 3:
"9,#,#,1"
Return false
Credits:
Special thanks to @dietpepsi for adding this problem and creating all test cases.
首先是根据树的性质解题,一个数字,肯定对应两个节点,所以遇到数字,count+=2,遇到#不操作。同时在每次遍历的之后,减去自身。如果最后count=0,说明符合规则,这个解题方法无视Preorder,Inorder,和Postorder。代码如下:
public boolean isValidSerialization(String preorder) {
String[] nodes = preorder.split(",");
int diff = 1;
for (String node: nodes) {
if (--diff < 0) return false;
if (!node.equals("#")) diff += 2;
}
return diff == 0;
}
另一种方法,遇到两个连续的#,pop两次,第一次相当于把左节点pop出去,第二次相当于把夫节点pop出去,这是如果peek不是#,把#push进来充当上上个夫节点的右节点,如果peek还是#,接着push。代码如下:
public class Solution {
public boolean isValidSerialization(String preorder) {
if (preorder == null && preorder.length() == 0) {
return false;
}
String[] strs = preorder.split(",");
Stack<String> stack = new Stack<String>();
for (String str: strs) {
while (str.equals("#") && !stack.isEmpty() && stack.peek().equals(str)) {
stack.pop();
if (stack.isEmpty()) {
return false;
}
stack.pop();
}
stack.push(str);
}
return stack.size() == 1 && stack.peek().equals("#");
}
}