One way to serialize a binary tree is to use pre-order traversal. When we encounter a non-null node, we record the node's value. If it is a null node, we record using a sentinel value such as #
.
_9_
/ \
3 2
/ \ / \
4 1 # 6
/ \ / \ / \
# # # # # #
For example, the above binary tree can be serialized to the string "9,3,4,#,#,1,#,#,2,#,6,#,#"
, where #
represents a null node.
Given a string of comma separated values, verify whether it is a correct preorder traversal serialization of a binary tree. Find an algorithm without reconstructing the tree.
Each comma separated value in the string must be either an integer or a character '#'
representing null
pointer.
You may assume that the input format is always valid, for example it could never contain two consecutive commas such as "1,,3"
.
Example 1:
Input:"9,3,4,#,#,1,#,#,2,#,6,#,#"
Output:true
Example 2:
Input:"1,#"
Output:false
Example 3:
Input:"9,#,#,1"
Output:false
解决这道题需要观察一颗二叉树的结构。
如果一颗二叉树的非叶子节点(题目中非‘#’)个数为node,那么叶子节点(题目中的‘#’)则是node+1。
利用上述发现,我们可以这样判断输入是否合法:
1 叶子节点=非叶子节点+1,则说明已经是一颗完整的二叉树。那后面还有节点,不管是叶子节点还是非叶子节点都是非法的。
2 永远不会出现:叶子节点>非叶子节点+1 的情况。
class Solution {
public:
bool isValidSerialization(string preorder) {
int node(0), leaf(0), i(0);
for (; i < preorder.size(); i++) {
if (preorder[i] == '#') {
leaf++;
}
else if (preorder[i] == ',') {
continue;
}
else {
node++;
while (i < preorder.size() && isdigit(preorder[i])) {
i++;
}
i--;
}
if (leaf > node + 1) return false;
if (leaf == node + 1){
i++;
break;
}
}
while (i < preorder.size()) {
if (preorder[i] == '#' || isdigit(preorder[i])) return false;
i++;
}
return leaf == node + 1;
}
};