Suppose you have N integers from 1 to N. We define a beautiful arrangement as an array that is constructed by these N numbers successfully if one of the following is true for the ith position (1 ≤ i ≤ N) in this array:
- The number at the ith position is divisible by i.
- i is divisible by the number at the ith position.
Now given N, how many beautiful arrangements can you construct?
Example 1:
Input: 2 Output: 2 Explanation:
The first beautiful arrangement is [1, 2]:
Number at the 1st position (i=1) is 1, and 1 is divisible by i (i=1).
Number at the 2nd position (i=2) is 2, and 2 is divisible by i (i=2).
The second beautiful arrangement is [2, 1]:
Number at the 1st position (i=1) is 2, and 2 is divisible by i (i=1).
Number at the 2nd position (i=2) is 1, and i (i=2) is divisible by 1.
Note:
- N is a positive integer and will not exceed 15.
1、递归的条件是:num%i==0 || i %num==0
2、helper需要的参数:可以存integer的list,记录当前数有没有被用过的boolean类型数组used,计数用的count,目标值n
代码如下:
public class Solution {
int count;
public int countArrangement(int N) {
count = 0;
helper(new ArrayList<Integer>(), new boolean[N + 1], N);
return count;
}
private void helper(List<Integer> list, boolean[] used, int n) {
if (list.size() == n) {
count ++;
}
for (int i = 1; i <= n; i ++) {
if (!used[i]) {
int id = list.size() + 1;
if (id % i == 0 || i % id == 0) {
list.add(i);
used[i] = true;
helper(list, used, n);
list.remove(list.size() - 1);
used[i] = false;
}
}
}
}
}
上面的代码相当于从第一位,一直放到最高位,这道题只是计数,没让保存,可以把list替换成一个index,代码稍微改变一下。代码如下:public class Solution {
public int countArrangement(int N) {
boolean[] arr = new boolean[N+1];
return find(arr, N);
}
private int find(boolean[] arr, int idx){
if(idx==0){ return 1; }
int res = 0;
for(int i=1; i<arr.length; i++){
if(!arr[i] && (idx%i==0 || i%idx==0)){
arr[i] = true;
res += find(arr, idx-1);
arr[i] = false;
}
}
return res;
}
}