16×3与3×16×3区别

本文通过具体示例展示了如何使用PyTorch进行张量的创建与修改操作,包括初始化张量、批量操作及索引赋值等常用方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import torch
a=[[0.000,-26.109,0.000],[26.031,86.410,1.000],
   [50.608,75.701,1.000],[71.730,87.567,1.000],
   [49.170,89.006,1.000],[23.139,94.790,1.000],
   [61.169,81.634,1.000],[98.050,58.777,1.000],
   [96.885,56.611,1.000],[116.569,53.422,1.000],
   [131.312,13.805,1.000],[111.644,34.630,1.000],
   [93.711,49.091,1.000],[102.388,68.462,1.000],
   [110.784,88.427,1.000],[139.129,89.584,1.000]]
   # [[0.000,-26.109,0.000],[26.031,86.410,1.000],
   # [50.608,75.701,1.000],[71.730,87.567,1.000],
   # [49.170,89.006,1.000],[23.139,94.790,1.000],
   # [61.169,81.634,1.000],[98.050,58.777,1.000],
   # [96.885,56.611,1.000],[116.569,53.422,1.000],
   # [131.312,13.805,1.000],[111.644,34.630,1.000],
   # [93.711,49.091,1.000],[102.388,68.462,1.000],
   # [110.784,88.427,1.000],[139.129,89.584,1.000]],
   # [[0.000,-26.109,0.000],[26.031,86.410,1.000],
   # [50.608,75.701,1.000],[71.730,87.567,1.000],
   # [49.170,89.006,1.000],[23.139,94.790,1.000],
   # [61.169,81.634,1.000],[98.050,58.777,1.000],
   # [96.885,56.611,1.000],[116.569,53.422,1.000],
   # [131.312,13.805,1.000],[111.644,34.630,1.000],
   # [93.711,49.091,1.000],[102.388,68.462,1.000],
   # [110.784,88.427,1.000],[139.129,89.584,1.000]],]

b=torch.FloatTensor(a)
b[6]=0
b[7]=0
# # c=b[:,0:6,:]
# d=b[:,8:,]
# print(b.size())
print(b)

输出结果:
 0.0000  -26.1090    0.0000
  26.0310   86.4100    1.0000
  50.6080   75.7010    1.0000
  71.7300   87.5670    1.0000
  49.1700   89.0060    1.0000
  23.1390   94.7900    1.0000
   0.0000    0.0000    0.0000
   0.0000    0.0000    0.0000
  96.8850   56.6110    1.0000
 116.5690   53.4220    1.0000
 131.3120   13.8050    1.0000
 111.6440   34.6300    1.0000
  93.7110   49.0910    1.0000
 102.3880   68.4620    1.0000
 110.7840   88.4270    1.0000
 139.1290   89.5840    1.0000
[torch.FloatTensor of size 16x3]


另一种:
import torch
a=[[[0.000,-26.109,0.000],[26.031,86.410,1.000],
   [50.608,75.701,1.000],[71.730,87.567,1.000],
   [49.170,89.006,1.000],[23.139,94.790,1.000],
   [61.169,81.634,1.000],[98.050,58.777,1.000],
   [96.885,56.611,1.000],[116.569,53.422,1.000],
   [131.312,13.805,1.000],[111.644,34.630,1.000],
   [93.711,49.091,1.000],[102.388,68.462,1.000],
   [110.784,88.427,1.000],[139.129,89.584,1.000]],
   [[0.000,-26.109,0.000],[26.031,86.410,1.000],
   [50.608,75.701,1.000],[71.730,87.567,1.000],
   [49.170,89.006,1.000],[23.139,94.790,1.000],
   [61.169,81.634,1.000],[98.050,58.777,1.000],
   [96.885,56.611,1.000],[116.569,53.422,1.000],
   [131.312,13.805,1.000],[111.644,34.630,1.000],
   [93.711,49.091,1.000],[102.388,68.462,1.000],
   [110.784,88.427,1.000],[139.129,89.584,1.000]],
   [[0.000,-26.109,0.000],[26.031,86.410,1.000],
   [50.608,75.701,1.000],[71.730,87.567,1.000],
   [49.170,89.006,1.000],[23.139,94.790,1.000],
   [61.169,81.634,1.000],[98.050,58.777,1.000],
   [96.885,56.611,1.000],[116.569,53.422,1.000],
   [131.312,13.805,1.000],[111.644,34.630,1.000],
   [93.711,49.091,1.000],[102.388,68.462,1.000],
   [110.784,88.427,1.000],[139.129,89.584,1.000]]]

b=torch.FloatTensor(a)
b[:,6,:]=0
b[:,7,:]=0
# # c=b[:,0:6,:]
# d=b[:,8:,]
# print(b.size())
print(b)
输出结果:
(0 ,.,.) =
    0.0000  -26.1090    0.0000
   26.0310   86.4100    1.0000
   50.6080   75.7010    1.0000
   71.7300   87.5670    1.0000
   49.1700   89.0060    1.0000
   23.1390   94.7900    1.0000
    0.0000    0.0000    0.0000
    0.0000    0.0000    0.0000
   96.8850   56.6110    1.0000
  116.5690   53.4220    1.0000
  131.3120   13.8050    1.0000
  111.6440   34.6300    1.0000
   93.7110   49.0910    1.0000
  102.3880   68.4620    1.0000
  110.7840   88.4270    1.0000
  139.1290   89.5840    1.0000

(1 ,.,.) =
    0.0000  -26.1090    0.0000
   26.0310   86.4100    1.0000
   50.6080   75.7010    1.0000
   71.7300   87.5670    1.0000
   49.1700   89.0060    1.0000
   23.1390   94.7900    1.0000
    0.0000    0.0000    0.0000
    0.0000    0.0000    0.0000
   96.8850   56.6110    1.0000
  116.5690   53.4220    1.0000
  131.3120   13.8050    1.0000
  111.6440   34.6300    1.0000
   93.7110   49.0910    1.0000
  102.3880   68.4620    1.0000
  110.7840   88.4270    1.0000
  139.1290   89.5840    1.0000

(2 ,.,.) =
    0.0000  -26.1090    0.0000
   26.0310   86.4100    1.0000
   50.6080   75.7010    1.0000
   71.7300   87.5670    1.0000
   49.1700   89.0060    1.0000
   23.1390   94.7900    1.0000
    0.0000    0.0000    0.0000
    0.0000    0.0000    0.0000
   96.8850   56.6110    1.0000
  116.5690   53.4220    1.0000
  131.3120   13.8050    1.0000
  111.6440   34.6300    1.0000
   93.7110   49.0910    1.0000
  102.3880   68.4620    1.0000
  110.7840   88.4270    1.0000
  139.1290   89.5840    1.0000
[torch.FloatTensor of size 3x16x3]




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值