一、树的定义
树(tree)是包含n(n>=0)个结点的有穷集,其中:
- 每个元素称为结点(node);
- 有一个特定的结点被称为根结点或树根(root);
- 除根结点之外的其余数据元素被分为m(m≥0)个互不相交的集合T1,T2,……Tm-1,其中每一个集合Ti(1<=i<=m)本身也是一棵树,被称作原树的子树(subtree);
- 单个结点是一棵树,树根就是该结点本身;
- 空集合也是树,称为空树。空树中没有结点。
树也可以这样定义:树是由根结点和若干颗子树构成的。树是由一个集合以及在该集合上定义的一种关系构成的。集合中的元素称为树的结点,所定义的关系称为父子关系。父子关系在树的结点之间建立了一个层次结构。在这种层次结构中有一个结点具有特殊的地位,这个结点称为该树的根结点,或称为树根。
二、树的特点
树状图是一种数据结构,它是由n(n>=1)个有限结点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:
- 每个结点有零个或多个子结点;
- 没有父结点的结点称为根结点;
- 每一个非根结点有且只有一个父结点;
- 除了根结点外,每个子结点可以分为多个不相交的子树;
三、相关术语
- 节点的度:一个节点含有的子树的个数称为该节点的度;
- 叶节点或终端节点:度为0的节点称为叶节点;
- 分支节点或非终端节点:度不为0的节点;
- 双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点;
- 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点;
- 兄弟节点:具有相同父节点的节点互称为兄弟节点;
- 树的度:一棵树中,最大的节点的度称为树的度;
- 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
- 树的高度或深度:树中节点的最大层次;
- 堂兄弟节点:双亲在同一层的节点互为堂兄弟;
- 节点的祖先:从根到该节点所经分支上的所有节点;
- 子孙:以某节点为根的子树中任一节点都称为该节点的子孙;
- 森林:由m(m>=0)棵互不相交的树的集合称为森林;
四、树的种类
- 无序树:树中任意节点的子结点之间没有顺序关系,这种树称为无序树,也称为自由树;
- 有序树:树中任意节点的子结点之间有左右顺序关系,这种树称为有序树;
- 二叉树:每个节点最多含有两个子树的树称为二叉树;
- 完全二叉树:一棵二叉树至多只有最下面的两层上的结点的度数可以小于2,并且最下层上的结点都集中在该层最左边的若干位置上;
- 满二叉树:除最后一层无任何子节点外,每一层上的所有结点都有两个子结点二叉树;
一、题目描述
如图为一颗树,试用术语描述该树。
二、分析
可从以下几个方面来进行描述:
- 树的类型。
- 各节点的度、树的度。
- 根节点、叶子节点。
- 树的深度、各节点层次。
- 各节点的双亲节点、子节点、子孙节点、祖先节点、兄弟节点、堂兄弟节点。