Fibonacci
斐波那契数题目链接
Description
In the Fibonacci integer sequence, F 0 F_0 F0 = 0, F 1 F_1 F1 = 1, and F n F_n Fn = F n − 1 F_{n-1} Fn−1 + F n − 2 F_{n-2} Fn−2 for n n n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
Given an integer n, your goal is to compute the last 4 digits of F n F_n Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print F n F_n Fn mod 10000).
Sample Input
0
9
999999999
1000000000
-1
Sample Output
0
34
626
6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
AC代码
#include<iostream>
#include<cstring>
using namespace std;
const int mod = 10000;
typedef long long ll;
ll n;
void mul(ll f[2], ll a[2][2])
{
ll c[2];
memset(c, 0, sizeof c);
for(int j = 0; j < 2; j++)
for(int k = 0; k < 2; k++)
c[j] = (c[j] + (ll)f[k] * a[k][j]) % mod;
memcpy(f, c, sizeof c);
}
void myself(ll a[2][2])
{
ll c[2][2];
memset(c, 0, sizeof c);
for(int i = 0; i < 2; i++)
for(int j = 0; j < 2; j++)
for(int k = 0; k < 2; k++)
c[i][j] = (c[i][j] + (ll)a[i][k] * a[k][j]) % mod;
memcpy(a, c, sizeof c);
}
int main()
{
while(cin >> n && n != -1)
{
ll f[2] = {0, 1};
ll a[2][2] = {{0, 1}, {1, 1}};
for(; n; n >>= 1)
{
if(n & 1)
mul(f, a);
myself(a);
}
cout << f[0] << endl;
}
return 0;
}