【poj3070】Fibonacci(矩阵)

In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

An alternative formula for the Fibonacci sequence is
这里写图片描述

.

Given an integer n, your goal is to compute the last 4 digits of Fn.

Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

Sample Input
0
9
999999999
1000000000
-1
Sample Output
0
34
626
6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

.这里写图片描述

Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:

.这里写图片描述

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
struct Matrix
{
    long long a[5][5];
    int h,w;
}pr,ne;
long long n;
void init()
{
    pr.a[2][1]=pr.a[1][2]=0;//初始化单位矩阵(a[i][i]值为1,其他值为0)
    pr.a[1][1]=pr.a[2][2]=1;//任何矩阵乘以单位矩阵,其值不变 
    pr.h =2,pr.w =2;
    ne.a[1][1]=ne.a[1][2]=ne.a[2][1]=1;
    ne.a[2][2]=0;//初始化初始矩阵(用来进行n次幂的矩阵) 
    ne.h =2,ne.w =2;
}
Matrix Matrix_multiply(Matrix x,Matrix y)//矩阵乘法 
{
    Matrix t;
    memset(t.a,0,sizeof(t.a));
    t.h =x.h ;//新矩阵的长宽 
    t.w =y.w ;
    for(int i=1;i<=x.h ;i++)
    {
        for(int j=1;j<=y.h;j++)//y.h==x.w
        {
            if(x.a[i][j]==0)
            continue;
            for(int l=1;l<=y.w ;l++)
            {
                t.a[i][l]=(t.a[i][l]+x.a[i][j]*y.a[j][l]%10000)%10000;
            }
        }
    }
    return t;

 } 
void Matrix_mod(int n)
{
    while(n)
    {
        if(n&1) pr=Matrix_multiply(ne,pr);
        ne=Matrix_multiply(ne,ne);
        n>>=1;
    }
    /*
    主要是初始矩阵的n次幂,若n为奇数,则n&1值为1,
    就要pr自己算一次,若为偶数则pr就要进行n次幂了 
    */
}
int main()
{
    while(~scanf("%lld",&n)&&n!=-1)
    {
        init();//初始化 
        Matrix_mod(n); //快速幂 
        printf("%lld\n",pr.a[1][2]%10000);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值