【大模型】 端侧大模型 Qwen/Qwen2.5-1.5B-Instruct

Qwen2.5-1.5B-Instruct 模型介绍

就 Qwen2.5 语言模型而言,所有模型都在我们最新的大规模数据集上进行了预训练,该数据集包含多达 18T tokens。相较于 Qwen2,Qwen2.5 获得了显著更多的知识(MMLU:85+),并在编程能力(HumanEval 85+)和数学能力(MATH 80+)方面有了大幅提升。此外,新模型在指令执行、生成长文本(超过 8K 标记)、理解结构化数据(例如表格)以及生成结构化输出特别是 JSON 方面取得了显著改进。 Qwen2.5 模型总体上对各种system prompt更具适应性,增强了角色扮演实现和聊天机器人的条件设置功能。与 Qwen2 类似,Qwen2.5 语言模型支持高达 128K tokens,并能生成最多 8K tokens的内容。它们同样保持了对包括中文、英文、法文、西班牙文、葡萄牙文、德文、意大利文、俄文、日文、韩文、越南文、泰文、阿拉伯文等 29 种以上语言的支持。 我们在下表中提供了有关模型的基本信息。

Qwen2.5-1.5B-Instruct 模型特征:

  • Type: Causal Language Models
  • Training Stage: Pretraining & Post-training
  • Architecture: transformers with RoPE, SwiGLU, RMSNorm, Attention QKV bias and tied word embeddings
  • Number of Parameters: 1.54B
  • Number of Paramaters (Non-Embedding): 1.31B
  • Number of Layers: 28
  • Number of Attention Heads (GQA): 12 for Q and 2 for KV
  • Context Length: Full 32,768 tokens and generation 8192 tokens

发布时间

2024年9月份

模型测评

  • Qwen2.5-0.5B/1.5B/3B 表现:

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

  • Qwen2.5-0.5B/1.5B-Instruct 表现:

在这里插入图片描述

推理性能

在这里插入图片描述
在这里插入图片描述

运行环境安装

pip install transformers==4.45.2

运行模型

  • with transformers:
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "Qwen/Qwen2.5-1.5B-Instruct"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "Give me a short introduction to large language model."
messages = [
    {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

下载

model_id: Qwen/Qwen2.5-1.5B-Instruct
下载地址:https://hf-mirror.com/Qwen/Qwen2-VL-2B-Instruct 不需要翻墙

开源协议

License: apache-2.0

参考

### Qwen2.5 Web Resources and Information #### Overview of Qwen2.5 Qwen2.5 is a powerful language model series developed by Alibaba Cloud, known for its superior capabilities in text generation, conversation handling, and question answering[^1]. This makes it an essential tool for developers looking to integrate advanced natural language processing features into their applications. #### Official Documentation and Repositories For comprehensive guides on downloading, deploying, and training the Qwen2.5 model, refer to official documentation provided by Alibaba Cloud. The detailed instructions cover environment setup, deployment methods using tools like vLLM for OpenAI-style API services, and front-end interaction via platforms such as Open WebUI. Additionally, community contributions can be found at repositories listed under resources curated by enthusiasts, which include links to various implementations and tutorials related to large language models (LLMs), including Qwen2.5[^2]. #### Community Contributions and Discussions Engage with communities where discussions about MM-LLM commonly used LLMs take place; these forums often contain valuable insights from users who have experience working specifically with Qwen among other popular models like Flan-T5, ChatGLM, UL2, Chinchilla, OPT, PaLM, LLaMA, LLaMA-2, and Vicuna[^3]. ```python import requests def get_qwen_resources(): url = "https://github.com/WangRongsheng/awesome-LLM-resourses" response = requests.get(url) if response.status_code == 200: print("Successfully accessed resource page.") else: print(f"Failed to access resource page with status code {response.status_code}") get_qwen_resources() ``` --related questions-- 1. What are some key differences between Qwen2.5 and earlier versions? 2. How does one set up an environment suitable for running Qwen2.5 locally? 3. Can you provide examples of successful projects that utilized Qwen2.5? 4. Are there any specific hardware requirements recommended for optimal performance when using Qwen2.5? 5. Where can I find more detailed technical specifications regarding Qwen2.5's architecture?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

szZack

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值