xgb.XGBRegressor之多回归MultiOutputRegressor调参1
-
环境
- Ubuntu18.04
- python3.6.9
- xgboost 1.5.2
-
依赖库
import pandas as pd from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV #网格搜索 from sklearn.metrics import make_scorer from sklearn.metrics import r2_score from sklearn.ensemble import GradientBoostingRegressor from sklearn.multioutput import MultiOutputRegressor import xgboost as xgb import joblib
-
调参核心代码
def tune_parameter(train_data_path, test_data_path, n_input, n_output, version): # 模型调参 x,y = load_data(version, 'train', train_data_path, n_input, n_output) train_x,test_x,train_y,test_y = train_test_split(x,y,test_size=0.2,random_state=2022) gsc

本文介绍如何使用xgboost的XGBRegressor进行多目标预测,并通过GridSearchCV进行参数调优。作者分享了详细代码,包括数据加载、模型训练、参数搜索及评估指标,适合对xgboost在多变量回归中应用感兴趣的读者。
最低0.47元/天 解锁文章
1358

被折叠的 条评论
为什么被折叠?



