🚀个人主页:为梦而生~ 关注我一起学习吧!
💡专栏:机器学习 欢迎订阅!后面的内容会越来越有意思~
⭐特别提醒:针对机器学习,特别开始专栏:机器学习python实战 欢迎订阅!本专栏针对机器学习基础专栏的理论知识,利用python代码进行实际展示,真正做到从基础到实战!
💡往期推荐:
【机器学习基础】机器学习入门(1)
【机器学习基础】机器学习入门(2)
【机器学习基础】机器学习的基本术语
【机器学习基础】机器学习的模型评估(评估方法及性能度量原理及主要公式)
【机器学习基础】一元线性回归(适合初学者的保姆级文章)
【机器学习基础】多元线性回归(适合初学者的保姆级文章)
【机器学习基础】对数几率回归(logistic回归)
💡本期内容:针对前面的三个模型,在使用他们进行实际预测与分类时,会产生一系列对于不同的数据集的特别的问题,这篇文章就来有针对性的说一下!
文章目录
1 过拟合问题
如果我们有非常多的特征,我们通过学习得到的假设可能能够非常好地适应训练集(代价函数可能几乎为 0),但是可能会不能推广到新的数据。
1.1 回归问题中的过拟合
在线性回归中,我们可能遇到上面这几个问题:
第一个属于高偏差,欠拟合,不能很好地适应我们的训练集;
第三个属于高方差,模型过于强调拟合原始数据,而不能适应新的数据集,属于过拟合。
我们可以看出,若给出一个新的值使之预测,它将表现的很差,是过拟合,虽然能非常好地适应我们的 训练集但在新输入变量进行预测时可能会效果不好;而中间的模型似乎最合适。
1.2 分类问题中的过拟合
同样,在逻辑回归中,我们也可能遇到这些问题:
𝑥 的次数越高,拟合的越好,但相应的预测的能力就可能变差。
1.3 如何解决
问题是,如果我们发现了过拟合问题,应该如何处理?
- 丢弃一些不能帮助我们正确预测的特征。可以是手工选择保留哪些特征,或者使用一 些模型选择的算法来帮忙(例如 PCA)
- 正则化。 保留所有的特征,但是减少参数的大小(magnitude)。
2 代价函数(cost function)
上面的回归问题中如果我们的假设函数是 h θ ( x ) = θ 0 + θ 1 x 1 +