
图像转换
PoemK
这个作者很懒,什么都没留下…
展开
-
Informative Sample Mining Network for Multi-Domain Image-to-Image Translation
Jie Cao, Huaibo Huang, Yi Li, Ran He, Zhenan Sun. Informative Sample Mining Network for Multi-Domain Image-to-Image Translation. arXiv:2001.01173 (2020).原创 2020-03-27 16:09:02 · 435 阅读 · 0 评论 -
Unsupervised pixel-level domain adaptation with generative adversarial networks (DA+ 图像转换)
**Bousmalis, Konstantinos, et al. “Unsupervised pixel-level domain adaptation with generative adversarial networks.” CVPR2017. **问题背景:将原域的图像转换到目标域。已知源域的图像类别标签,对于目标域的图像标签未知。损失函数1. 域对抗损失:2. 分类损失...原创 2019-08-05 16:27:14 · 865 阅读 · 0 评论 -
A Content Transformation Block for Image Style Transfer (CVPR2019, 风格迁移)
Kotovenko, Dmytro, et al. “A Content Transformation Block for Image Style Transfer.” CVPR 2019.风格迁移问题: X→YX \rightarrow YX→Y 。源域为XXX,目标域为YYY本文中EEE为Encoder,主要负责提取图像内容信息,换句话说也就是去风格化。DDD为Decoder,主要负责将...原创 2019-08-07 21:51:07 · 2266 阅读 · 2 评论 -
Universal Style Transfer via Feature Transforms (WCT,风格迁移,NIPS2017)
Li Y, Fang C, Yang J, et al. Universal Style Transfer via Feature Transforms. NIPS 2017风格迁移的关键问题是如何提取有效果的风格特征并且让输入的内容图像去匹配这种风格。前人的工作证明了协方差矩阵和Gram矩阵能较好地反映视觉风格。基于优化的风格迁移方法,可以处理任意风格并且达到满意的效果但是计算代价太大(时间...原创 2019-08-20 15:55:13 · 3360 阅读 · 2 评论 -
Adaptive Instance Normalization (AdaIN Normalization) ICCV 2017
paper: Huang, Xun, and Serge Belongie. “Arbitrary style transfer in real-time with adaptive instance normalization.” ICCV 2017.论文首先回顾了Batch Normalization和Instance Normalization1. Batch Normalization...原创 2019-08-11 21:54:43 · 5514 阅读 · 0 评论 -
Diversified texture synthesis with feed-forward networks (纹理生成、风格迁移,CVPR2017)
paper: Li, Yijun, et al. “Diversified texture synthesis with feed-forward networks.” IEEE CVPR 2017.目前的判别和生成模型在纹理合成方面有较好的效果。但是,现存的基于前馈神经网络的方法往往牺牲generality(普遍性)来换取效率,这往往会引发以下问题: 1) 训练出的网络缺少generality...原创 2019-08-17 14:24:44 · 1509 阅读 · 0 评论