import numpy as np
data = np.loadtxt('abc.txt', delimiter=',', dtype=str,skiprows=1)
print(np.mean(data[:,0].astype(np.float)))
print(np.median(data[:,0].astype(np.float)))
print(np.std(data[:,0].astype(np.float)))
ma=np.amax(data[:,0].astype(np.float))
mi=np.amin(data[:,0].astype(np.float))
data_0=(data[:,0].astype(np.float)-mi)/(ma-mi)
print(data_0)
print(np.percentile(data[:,0].astype(np.float),q=5))
print(np.percentile(data[:,0].astype(np.float),q=95))
r,c=data.shape
x=np.random.uniform(low=0, high=r*(c-1), size=20).astype(np.int)
for i in range(20):
a=int(x[i]/(c-1))
b=x[i]-a*(c-1)
print(a,b)
data[a,b]=str(np.nan)
print(data)
data0=data[:,0].astype(np.float)
print(data0)
print(np.where(np.isnan(data0)))
for i in range(r):
if float(data[i,0])<5 and float(data[i,2])>1.5:
print(i)
for i in range(r):
f=0
for j in range(c):
if data[i,j]==str(np.nan):
f=1
break;
if f==0:
print(i)
print(np.corrcoef(data[:,0].astype(np.float),data[:,2].astype(np.float)))
f=0
for i in range(r):
for j in range(c):
if data[i,j]==str(np.nan):
f=1
break
if f==1:
break
if f==1:
print("false")
else:
print("true")
for i in range(r):
for j in range(c):
if data[i,j]==str(np.nan):
data[i,j]=str(0);
l=0
for j in range(c):
d=data[:,j]
l=l+len(np.unique(x, return_counts=True))
print(l)
'''for i in range(r):
if float(data[i,2])<3:
data[i,2]="small";
elif float(data[i,2])>5:
data[i,2]="large";
else:
data[i,2]="medium";'''
data2=data[:,2].astype(np.float)
volume=(np.pi*data0*data2*data2)/3
m=np.insert(data,4,volume)
p=np.zeros(r)
p1=0
for i in range(r):
if data[i,4]=="Iris-setosa":
p1=p1+1
for i in range(r):
if data[i,4]=="Iris-setosa":
p[i]=2.0/3.0/p1;
else:
p[i]=1.0/3.0/(r-p1);
k=np.random.choice(data[:,4],size=30,replace=False,p=p)
np.argmax(data[:,3].astype(np.float)>1)
04-12
06-10