- 博客(14)
- 收藏
- 关注
原创 强化学习——Actor Critic Method
强化学习——Actor Critic Methodimport gym, osfrom itertools import countimport paddleimport paddle.nn as nnimport paddle.optimizer as optimimport paddle.nn.functional as Ffrom paddle.distribution import Categoricaldevice = paddle.get_device()env = gym.
2021-10-21 16:01:37
101
原创 使用paddle实现手写数字识别
使用paddle实现手写数字识别import paddlefrom paddle.nn import Linearimport paddle.nn.functional as F import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image# 定义mnist数据识别网络结构,同房价预测网络class MNIST(paddle.nn.Layer): def __init__(self)
2021-10-19 19:56:44
722
原创 paddle使用卷积神经网络实现图像处理
卷积神经网络图像处理import paddleimport paddle.nn.functional as Ffrom paddle.vision.transforms import ToTensorimport numpy as npimport matplotlib.pyplot as plttransform = ToTensor()cifar10_train = paddle.vision.datasets.Cifar10(mode='train',
2021-10-15 23:09:00
317
原创 主成分分析(PCA)
主成分分析(PCA)import numpy as npimport matplotlib.pyplot as pltdata = np.matrix([[2.5,2.4],[0.5,0.7],[2.2,2.9],[1.9,2.2],[3.1,3.0], [2.3,2.7],[2,1.6],[1,1.1],[1.5,1.6],[1.1,0.9]])average = np.mean(data,axis=0)data_adjust = np.zeros((10,
2021-10-07 21:10:28
105
原创 Euler作业(新)
Euler作业(新)import matplotlib.pyplot as pltimport numpy as npclass Euler(): """新、旧欧拉算法比较""" def __init__(self): self.x = 0.2 self.y = 0.8 self.list_x = [0,0.2,] self.list_y = [1,0.8,] self.h = 0.2 def
2021-09-24 16:22:18
99
原创 Euler作业
用欧拉法解初值问题import matplotlib.pyplot as pltx = 0y = 1xx = [0]yy = [1]h = 0.1for i in range (1,100): y = 1.1*y - 0.2*x/y x = x + h xx.append(x) yy.append(y)for i in range(100): print('%-30s%-20s' %(xx[i],yy[i]))fig = plt.figure()
2021-09-16 11:41:38
184
转载 作业:实现感知器
使用python实现感知器from __future__ import print_functionfrom functools import reduceclass VectorOp(object): """ 实现向量计算操作 """ def dot(x, y): """ 计算两个向量x和y的内积 """ # 首先把x[x1,x2,x3...]和y[y1,y2,y3,...]按元素相乘
2021-09-10 19:21:33
196
原创 线性回归算法作业
import numpy as npimport matplotlib.pyplot as pltx = np.array([[2104,3],[1600,3],[2400,3],[1416,2],[3000,4]])y = np.array([400,330,369,232,540])alpha = 0.1theta0 = np.random.random()theta1 = np.random.random()theta2 = np.random.random()theta = np.
2021-09-03 23:19:45
153
转载 numpy作业
#垂直拆分,水平拆分c = np.arange(1,13).reshape(6,2)#np.reshape()print(c)print(np.vsplit(c,3))#np.vsplit(),垂直拆分d = c.Tprint(d)print(np.hsplit(d,3))#np.hspilt()水平拆分e = np.array([ [[11, 21], [12, 22], [13, 23]], [[14, 24],
2021-09-03 22:05:43
250
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人