Definition:
A real symmetric m*m matrix K satisfying
for all (m-dimisionational vector a) is called a positive semi-definite matrix.
Theorems:
(1) A real symmetric matrix is diagonalizable.
(2) A real symmetric matrix is positive semi-definite if and only if all its eigenvalues are non-negative.
本文定义了正定半正定矩阵,并介绍了实对称矩阵的一些定理:实对称矩阵可对角化,以及实对称矩阵为正定半定矩阵当且仅当其所有特征值非负。
1万+





