Positive-definite matrix

本文介绍了线性代数中正定矩阵的概念,详细解释了实对称矩阵和埃尔米特矩阵成为正定矩阵的条件,并通过具体的例子展示了如何判断一个矩阵是否为正定矩阵。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

In linear algebra, a symmetric n × n real matrix M is said to be positive definite if zTMz is positive for every non-zero columnvector z of n real numbers. Here zT denotes thetranspose of z.

  • The real symmetric matrix
M = \begin{bmatrix} 2&-1&0\\-1&2&-1\\0&-1&2 \end{bmatrix}
is positive definite since for any non-zero column vector z with entries a, b and c, we have
\begin{align} z^{\mathrm{T}}M z = (z^{\mathrm{T}}M) z &= \begin{bmatrix} (2a-b)&(-a+2b-c)&(-b+2c) \end{bmatrix} \begin{bmatrix} a\\b\\c \end{bmatrix} \\&= 2{a}^2 - 2ab + 2{b}^2 - 2bc + 2{c}^2 \\&= {a}^2+(a - b)^{2} + (b - c)^{2}+{c}^2\end{align}
This result is a sum of squares, and therefore non-negative; and is zero only if a = b = c = 0, that is, when z is zero.
  • The real symmetric matrix
N =  \begin{bmatrix} 1 & 2 \\ 2 & 1\end{bmatrix}

is not positive definite. If z is the vector \begin{bmatrix} 1\\ -1\end{bmatrix}, one hasz^{\mathrm{T}}N z = \begin{bmatrix} 1 & -1\end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1\end{bmatrix} \begin{bmatrix} 1 \\ -1\end{bmatrix}=\begin{bmatrix} -1 & 1\end{bmatrix} \begin{bmatrix} 1 \\ -1\end{bmatrix}=-2 \not > 0.


More generally, an n × n Hermitian matrix M is said to be positive definite if z*Mz is real and positive for all non-zero complex vectors z. Here z* denotes the conjugate transpose of z.

摘自:https://en.wikipedia.org/wiki/Positive_semidefinite_matrix

转载于:https://www.cnblogs.com/hanhuilee/p/5221270.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值