RLC 的时域、s 域模型
元件 | 时域 | 复频域 |
---|---|---|
R | u(t)=Ri(t)u(t)=Ri(t)u(t)=Ri(t) | U=RI(s)U=RI(s)U=RI(s) |
L | u(t)=Lddti(t)i(t)=1L∫−∞tu(τ)dτ\begin{aligned}u(t)&=L\frac{d}{dt}i(t)\\ i(t)&=\frac1L\int_{-\infty}^tu(\tau)d\tau\end{aligned}u(t)i(t)=Ldtdi(t)=L1∫−∞tu(τ)dτ | U(s)=sLI(s)−Li(0−)I(s)=U(s)sL+i(0−)s\begin{aligned} U(s)&=sLI(s)-Li(0^-) \\ I(s)&=\frac{U(s)}{sL}+\frac{i(0^-)}{s} \end{aligned}U(s)I(s)=sLI(s)−Li(0−)=sLU(s)+si(0−) |
C | u(t)=1C∫−∞ti(τ)dτi(t)=Cddtu(t)\begin{aligned} u(t)&=\frac1C\int_{-\infty}^ti(\tau)d\tau \\ i(t)&=C\frac d{dt}u(t) \end{aligned} u(t)i(t)=C1∫−∞ti(τ)dτ=Cdtdu(t) | I(s)=sCU(s)−Cu(0−)U(s)=I(s)sC+u(0−)s\begin{aligned} I(s)&=sCU(s)-Cu(0^-)\\ U(s)&=\frac{I(s)}{sC}+\frac{u(0^-)}s \end{aligned}I(s)U(s)=sCU(s)−Cu(0−)=sCI(s)+su(0−) |