nonparametric Bayesian model motivation

本文通过高斯混合模型(GMM)与主题模型(LDA)两个实例对比了参数模型与非参数模型的区别。参数模型在面对数据变化时难以灵活调整,而非参数模型能根据数据规模动态改变模型结构。此外,文章还探讨了非参数模型中先验过程的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Example 1: GMM

Given a set of observed data, two clusters generated by GMM of two components, we need to find a model to fit them. 



For parametric model, we can see the observed data's appearance or empirically assume the model is a GMM of two components. 


However, if we add more training data, i.e. we provide a additional cluster, totally three clusters, for parametric model GMM of two components,

we can just change the component weight to fit the training data. Obviously, it cannot fit data well. 


For nonparametric model, it can change the model structure or number of parameter depending on the data size.


Example 2: topic modelling 


In the similar way, if we have a training set of 6 words w1-w6, and each word belongs to distinct topic, z1-z6 all different, for theta has 6 components, it can fit

these words well. If we add an additional topic word w7, z7, z1-z7 all different, for theta has 6 components, it can not fit the data well, so that LDA generate

the example topic - word distribution


topic 1: w1

topic 2: w2

topic 3: w3

topic 4: w4, w7

topic 5: w5

topic 6: w6

这样就会导致,topic 4 is not meaningful. topic words are not coherent !!

if using nonparametric method, theta can be expanded to 7 components depending on the prior process.


For nonparametric, usually we will give a prior process on the distribution that we estimate. like GP, DP, BP,IBP


Note: nonparametric doesn't mean the model without parameters!!!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值