CF961G Partitions
题目描述
Solution
推式子:
A
n
s
Ans
Ans
=
∑
w
i
∑
s
=
0
n
(
n
−
1
s
−
1
)
{
n
−
s
k
−
1
}
=\sum w_i\sum_{s=0}^n\left ( \begin{aligned} n-1 \\ s-1 \end{aligned} \right ) \left\{ \begin{aligned} n-s \\ k-1 \end{aligned} \right\}
=∑wi∑s=0n(n−1s−1){n−sk−1}
把前面的 w i w_i wi先扔掉。
=
∑
s
=
0
n
(
n
−
1
s
−
1
)
∑
i
=
0
k
−
1
(
−
1
)
i
(
k
−
i
−
1
)
n
−
s
i
!
(
k
−
i
−
1
)
!
s
=\sum_{s=0}^n\left ( \begin{aligned} n-1 \\ s-1 \end{aligned} \right ) \sum_{i=0}^{k-1}\frac{(-1)^i(k-i-1)^{n-s}}{i!(k-i-1)!}s
=∑s=0n(n−1s−1)∑i=0k−1i!(k−i−1)!(−1)i(k−i−1)n−ss
=
∑
i
=
0
k
−
1
(
−
1
)
i
i
!
(
k
−
i
−
1
)
!
∑
s
=
0
n
(
n
−
1
s
−
1
)
(
k
−
i
−
1
)
n
−
s
s
=\sum_{i=0}^{k-1}\frac{(-1)^i}{i!(k-i-1)!}\sum_{s=0}^n\left ( \begin{aligned} n-1 \\ s-1 \end{aligned} \right )(k-i-1)^{n-s}s
=∑i=0k−1i!(k−i−1)!(−1)i∑s=0n(n−1s−1)(k−i−1)n−ss
=
∑
i
=
0
k
−
1
(
−
1
)
i
i
!
(
k
−
i
−
1
)
!
∑
s
=
0
n
(
n
−
1
s
−
1
)
(
k
−
i
−
1
)
n
−
s
+
(
n
−
1
s
−
1
)
(
k
−
i
−
1
)
n
−
s
(
s
−
1
)
=\sum_{i=0}^{k-1}\frac{(-1)^i}{i!(k-i-1)!}\sum_{s=0}^n\left ( \begin{aligned} n-1 \\ s-1 \end{aligned} \right )(k-i-1)^{n-s}+\left ( \begin{aligned} n-1 \\ s-1 \end{aligned} \right )(k-i-1)^{n-s}(s-1)
=∑i=0k−1i!(k−i−1)!(−1)i∑s=0n(n−1s−1)(k−i−1)n−s+(n−1s−1)(k−i−1)n−s(s−1)
=
∑
i
=
0
k
−
1
(
−
1
)
i
i
!
(
k
−
i
−
1
)
!
∑
s
=
0
n
(
n
−
1
s
−
1
)
(
k
−
i
−
1
)
n
−
s
+
(
n
−
2
s
−
2
)
(
k
−
i
−
1
)
n
−
s
(
n
−
1
)
=\sum_{i=0}^{k-1}\frac{(-1)^i}{i!(k-i-1)!}\sum_{s=0}^n\left ( \begin{aligned} n-1 \\ s-1 \end{aligned} \right )(k-i-1)^{n-s}+\left ( \begin{aligned} n-2 \\ s-2 \end{aligned} \right )(k-i-1)^{n-s}(n-1)
=∑i=0k−1i!(k−i−1)!(−1)i∑s=0n(n−1s−1)(k−i−1)n−s+(n−2s−2)(k−i−1)n−s(n−1)
=
∑
i
=
0
k
−
1
(
−
1
)
i
i
!
(
k
−
i
−
1
)
!
(
k
−
i
)
n
−
1
+
(
n
−
1
)
(
k
−
i
)
n
−
2
=\sum_{i=0}^{k-1}\frac{(-1)^i}{i!(k-i-1)!}(k-i)^{n-1}+(n-1)(k-i)^{n-2}
=∑i=0k−1i!(k−i−1)!(−1)i(k−i)n−1+(n−1)(k−i)n−2
=
∑
i
=
0
k
−
1
(
−
1
)
i
i
!
(
k
−
i
−
1
)
!
+
(
n
+
k
−
i
−
1
)
(
k
−
i
)
n
−
2
=\sum_{i=0}^{k-1}\frac{(-1)^i}{i!(k-i-1)!}+(n+k-i-1)(k-i)^{n-2}
=∑i=0k−1i!(k−i−1)!(−1)i+(n+k−i−1)(k−i)n−2
发现是一个卷积形式,直接 N u m b e r T h e o r e t i c T r a n s f o r m Number\;\;Theoretic\;\;Transform NumberTheoreticTransform计算即可。
但其实上面的式子还有一个更简单的表达方法:
A
n
s
=
∑
w
i
(
{
n
k
}
+
(
n
−
1
)
{
n
−
1
k
}
)
Ans=\sum w_i(\left\{ \begin{aligned} n \\ k \end{aligned} \right\}+(n-1)\left\{ \begin{aligned} n-1 \\ k\;\;\; \end{aligned} \right\})
Ans=∑wi({nk}+(n−1){n−1k})
这个式子可以用组合意义简单解释。
因此总时间复杂度为 O ( n l g n ) O(nlgn) O(nlgn)
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <cstring>
#include <ctime>
#include <cassert>
#include <string.h>
//#include <unordered_set>
//#include <unordered_map>
//#include <bits/stdc++.h>
#define MP(A,B) make_pair(A,B)
#define PB(A) push_back(A)
#define SIZE(A) ((int)A.size())
#define LEN(A) ((int)A.length())
#define FOR(i,a,b) for(int i=(a);i<(b);++i)
#define fi first
#define se second
using namespace std;
template<typename T>inline bool upmin(T &x,T y) { return y<x?x=y,1:0; }
template<typename T>inline bool upmax(T &x,T y) { return x<y?x=y,1:0; }
typedef long long ll;
typedef unsigned long long ull;
typedef long double lod;
typedef pair<int,int> PR;
typedef vector<int> VI;
const lod eps=1e-11;
const lod pi=acos(-1);
const int oo=1<<30;
const ll loo=1ll<<62;
const int mods=1e9+7;
const int G=3;
const int Gi=(mods+1)/G;
const int MAXN=600005;
const int INF=0x3f3f3f3f;//1061109567
/*--------------------------------------------------------------------*/
inline int read()
{
int f=1,x=0; char c=getchar();
while (c<'0'||c>'9') { if (c=='-') f=-1; c=getchar(); }
while (c>='0'&&c<='9') { x=(x<<3)+(x<<1)+(c^48); c=getchar(); }
return x*f;
}
int fac[MAXN],inv[MAXN];
int quick_pow(int x,int y)
{
int ret=1;
for (;y;y>>=1)
{
if (y&1) ret=1ll*ret*x%mods;
x=1ll*x*x%mods;
}
return ret;
}
int upd(int x,int y){ return x+y>=mods?x+y-mods:x+y; }
int solve(int n,int m)
{
int ret=0;
for (int i=0;i<=m;i++)
ret=upd(ret,1ll*(i&1?mods-1:1)*inv[i]%mods*quick_pow(m-i,n)%mods*inv[m-i]%mods);
return ret;
}
int main()
{
int n=read(),m=read(),sum=0;
for (int i=1;i<=n;i++) sum=upd(sum,read());
fac[0]=1;
for (int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%mods;
inv[n]=quick_pow(fac[n],mods-2);
for (int i=n-1;i>=0;i--) inv[i]=1ll*inv[i+1]*(i+1)%mods;
printf("%d\n",1ll*sum*upd(solve(n,m),1ll*(n-1)*solve(n-1,m)%mods)%mods);
return 0;
}