can控制器只需要进行少量的设置就可以进行通信,就像RS232那样。其中较难设置的部分就是通信波特率的计算。can总线能够在一定范围内容忍总线上can节点的通信波特率的偏差,这种技能使得can总线有很强的容错性,同时也降低了对每个节点的振荡器精度。
实际上,can总线的波特率是一个范围。假设定义的波特率是250KB/S,但是实际上根据对寄存器的设置,实际的波特率可能为200-300KB/S(具体取决于寄存器的设置)。
简单介绍一下波特率的计算,在can的底层协议里将can数据的每一位时间(TBit)分为许多的时间段(Tscl),这些时间段包括:位同步时间Tsync,时间段1Tseg1,时间段2Tseg2.
其中位同步时间占用1个Tscl;,时间段1占用(Tseg1+1)个Tscl;时间段2占用Tseg2+1个Tscl,所以can控制器的位时间TBit就是:
TBit = Tseg1+Tseg2+Tsync=(Tseg1+Tseg2+3)*Tscl,那么can的波特率canbps就是1/TBit。
但是这样计算出的值是一个理论值。在实际的网络通信中由于存在传输的延时,不同节点的晶体的误差等因数,使得网络can的波特率的计算变得复杂起来。can在技术上引入了重同步的概念,以更好的解决这些问题。
这样重同步带来的结果就是要么时间段1(Tseg1)增加TSJW(同步跳转宽度SJW+1),要么时间段减少TSJW,因此can的波特率实际上有一个范围:
1/(TBit+TSJW) <= CANbps <= 1/(TBit-TSJW)
CAN波特率的值由以下几个元素决定:
-
最小时间段Tscl
-
时间段1 Tseg1
-
时间段2 Tseg2
-
同步跳转宽度 SJW
那么Tscl是怎么计算的呢?
这是总线时序寄存器中的预分频寄存器BRP派上了用场,Tscl = (BRP+1)/FVBP,FVBP为微处理器的外设时钟。
tscl

本文详细介绍了CAN总线通信中波特率的计算原理,包括Tseg1、Tseg2、Tscl和同步跳转宽度的设定,以及如何通过BTR0和BTR1寄存器进行设置,同时讨论了波特率的实际范围和重同步机制的影响。
最低0.47元/天 解锁文章
2904

被折叠的 条评论
为什么被折叠?



