LeetCode 热题 HOT 100 - 141. 环形链表

思路1:哈希表

使用哈希表来存储所有已经访问过的节点。每次我们到达一个节点,如果该节点已经存在于哈希表中,则说明该链表是环形链表,否则就将该节点加入哈希表中。重复这一过程,直到我们遍历完整个链表即可

——时间复杂度:O(N),其中 N 是链表中的节点数。最坏情况下我们需要遍历每个节点一次。

——空间复杂度:O(N),其中 N 是链表中的节点数。主要为哈希表的开销,最坏情况下我们需要将每个节点插入到哈希表中一次。

/**
 * Definition for singly-linked list.
 * class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int x) {
 *         val = x;
 *         next = null;
 *     }
 * }
 */
public class Solution {
    public boolean hasCycle(ListNode head) {
        Set<ListNode> seen = new HashSet<ListNode>();
        while (head != null) {
            if (!seen.add(head)) {
                return true;
            }
            head = head.next;
        }
        return false;
    }
}

思路2:快慢指针

本方法需要对「Floyd 判圈算法」(又称龟兔赛跑算法)有所了解。

假想「乌龟」和「兔子」在链表上移动,「兔子」跑得快,「乌龟」跑得慢。当「乌龟」和「兔子」从链表上的同一个节点开始移动时,如果该链表中没有环,那么「兔子」将一直处于「乌龟」的前方;如果该链表中有环,那么「兔子」会先于「乌龟」进入环,并且一直在环内移动。等到「乌龟」进入环时,由于「兔子」的速度快,它一定会在某个时刻与乌龟相遇,即套了「乌龟」若干圈。

我们可以根据上述思路来解决本题。具体地,我们定义两个指针,一快一满。慢指针每次只移动一步,而快指针每次移动两步。初始时,慢指针在位置 head,而快指针在位置 head.next。这样一来,如果在移动的过程中,快指针反过来追上慢指针,就说明该链表为环形链表。否则快指针将到达链表尾部,该链表不为环形链表

(注:为什么我们要规定初始时慢指针在位置 head,快指针在位置 head.next,而不是两个指针都在位置 head(即与「乌龟」和「兔子」中的叙述相同)?

观察下面的代码,我们使用的是 while 循环,循环条件先于循环体。由于循环条件一定是判断快慢指针是否重合,如果我们将两个指针初始都置于 head,那么 while 循环就不会执行。因此,我们可以假想一个在 head 之前的虚拟节点,慢指针从虚拟节点移动一步到达 head,快指针从虚拟节点移动两步到达 head.next,这样我们就可以使用 while 循环了。

当然,我们也可以使用 do-while 循环。此时,我们就可以把快慢指针的初始值都置为 head)

——时间复杂度:O(N),其中 N 是链表中的节点数。

当链表中不存在环时,快指针将先于慢指针到达链表尾部,链表中每个节点至多被访问两次。

当链表中存在环时,每一轮移动后,快慢指针的距离将减小一。而初始距离为环的长度,因此至多移动 N 轮。

——空间复杂度:O(1)。我们只使用了两个指针的额外空间。

/**
 * Definition for singly-linked list.
 * class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int x) {
 *         val = x;
 *         next = null;
 *     }
 * }
 */
public class Solution {
    public boolean hasCycle(ListNode head) {
        if (head == null || head.next == null) {
            return false;
        }
        ListNode slow = head;
        ListNode fast = head.next;
        while (slow != fast) {
            if (fast == null || fast.next == null) {
                return false;
            }
            slow = slow.next;
            fast = fast.next.next;
        }
        return true;
    }
}

 

### LeetCode Hot 100 Problems 列表 LeetCode列表通常由社区投票选出,涵盖了各种难度级别的经典编程挑战。这些目对于准备技术面试非常有帮助。以下是部分 LeetCode 100 列表: #### 数组与字符串 1. **两数之和 (Two Sum)** 2. **三数之和 (3Sum)** 3. **无重复字符的最长子串 (Longest Substring Without Repeating Characters)** 4. **寻找两个正序数组的中位数 (Median of Two Sorted Arrays)** #### 动态规划 5. **爬楼梯 (Climbing Stairs)** 6. **不同的二叉搜索树 (Unique Binary Search Trees)** 7. **最大子序列和 (Maximum Subarray)** #### 字符串处理 8. **有效的括号 (Valid Parentheses)** 9. **最小覆盖子串 (Minimum Window Substring)** 10. **字母异位词分组 (Group Anagrams)** #### 图论 11. **岛屿数量 (Number of Islands)** 12. **课程表 II (Course Schedule II)** #### 排序与查找 13. **最接近原点的 K 个点 (K Closest Points to Origin)** 14. **接雨水 (Trapping Rain Water)** 15. **最长连续序列 (Longest Consecutive Sequence)[^2]** #### 堆栈与队列 16. **每日温度 (Daily Temperatures)** 17. **滑动窗口最大值 (Sliding Window Maximum)** #### 树结构 18. **验证二叉搜索树 (Validate Binary Search Tree)** 19. **二叉树的最大路径和 (Binary Tree Maximum Path Sum)** 20. **从前序与中序遍历序列构造二叉树 (Construct Binary Tree from Preorder and Inorder Traversal)** #### 并查集 21. **冗余连接 II (Redundant Connection II)** #### 贪心算法 22. **跳跃游戏 (Jump Game)** 23. **分割等和子集 (Partition Equal Subset Sum)** #### 双指针技巧 24. **环形链表 II (Linked List Cycle II)[^1]** 25. **相交链表 (Intersection of Two Linked Lists)** #### 其他重要目 26. **LRU缓存机制 (LRU Cache)** 27. **打家劫舍系列 (House Robber I & II)** 28. **编辑距离 (Edit Distance)** 29. **单词拆分 (Word Break)** 此列表并非官方发布版本而是基于社区反馈整理而成。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值