http://codeforces.com/gym/102028/problem/E
题目大意:给你
n
n
n个电阻,第
i
i
i个电阻的阻值为:(1)若
i
i
i能够被
d
2
d^{2}
d2整除,其中(
d
>
=
2
d>=2
d>=2)则
R
i
=
inf
R_{i}=\inf
Ri=inf;(2)否则
R
i
=
i
R_{i}=i
Ri=i。你有
n
n
n种并联电阻的方式,第
i
i
i种方式是把下标为
i
i
i的因子的电阻并联起来,求并联后的等效电阻的最小值。(化成最简分数的形式)
思路:电阻并联的计算公式如下。
那么要使
R
R
R最小,就要使分母最大,那么就要使
R
1
、
R
2
、
…
…
、
R
n
R_{1}、R_{2}、……、R_{n}
R1、R2、……、Rn尽量小,再根据电阻阻值的定义,就知道最优选择就是从小到大的选取素数。但是阻值的计算不是很方便,但是打表很容易看出规律。举个例子:(1)当
n
=
1
n=1
n=1时,
R
1
=
1
/
1
=
1
R_{1}=1/1=1
R1=1/1=1;(2)当
n
=
2
n=2
n=2时,
R
2
=
1
/
(
1
+
1
/
2
)
=
2
/
3
R_{2}=1/(1+1/2)=2/3
R2=1/(1+1/2)=2/3;(3)当
n
=
6
n=6
n=6时,
R
3
=
1
/
(
1
+
1
/
2
+
1
/
3
+
1
/
6
)
=
1
/
2
R_{3}=1/(1+1/2+1/3+1/6)=1/2
R3=1/(1+1/2+1/3+1/6)=1/2;(4)当
n
=
30
n=30
n=30时,同理可计算出
R
4
=
5
/
12
R_{4}=5/12
R4=5/12。可以发现以下规律:
R
2
=
R
1
∗
2
/
3
,
R
3
=
R
2
∗
3
/
4
,
R
4
=
R
3
∗
5
/
6
R_{2}=R_{1}*2/3,\ R_{3}=R_{2}*3/4,\ R_{4}=R_{3}*5/6
R2=R1∗2/3, R3=R2∗3/4, R4=R3∗5/6(分子是素数 分母是素数+1),我们得到了一个递推关系,那么就可以很快计算出答案辣。
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define EPS 1e-10
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
const int maxn=305;
bool vis[maxn+5];
ll prime[maxn+5];
int k=-1;
void oula()
{
for(int i=2;i<=maxn;i++)
{
if(!vis[i])
prime[++k]=i;
for(int j=0;j<=k&&prime[j]*i<=maxn;j++)
{
vis[prime[j]*i]=1;
if(i%prime[j]==0)
break;
}
}
}
//大数
struct BigInteger
{
static const int BASE = 100000000; //和WIDTH保持一致
static const int WIDTH = 8; //八位一存储,如修改记得修改输出中的%08d
bool sign; //符号, 0表示负数
size_t length; //位数
vector<int> num; //反序存
//构造函数
BigInteger(long long x = 0) { *this = x; }
BigInteger(const string &x) { *this = x; }
BigInteger(const BigInteger &x) { *this = x; }
//剪掉前导0,并且求一下数的位数
void cutLeadingZero()
{
while (num.back() == 0 && num.size() != 1)
{
num.pop_back();
}
int tmp = num.back();
if (tmp == 0)
{
length = 1;
}
else
{
length = (num.size() - 1) * WIDTH;
while (tmp > 0)
{
length++;
tmp /= 10;
}
}
}
//赋值运算符
BigInteger &operator=(long long x)
{
num.clear();
if (x >= 0)
{
sign = true;
}
else
{
sign = false;
x = -x;
}
do
{
num.push_back(x % BASE);
x /= BASE;
} while (x > 0);
cutLeadingZero();
return *this;
}
BigInteger &operator=(const string &str)
{
num.clear();
sign = (str[0] != '-'); //设置符号
int x, len = (str.size() - 1 - (!sign)) / WIDTH + 1;
for (int i = 0; i < len; i++)
{
int End = str.size() - i * WIDTH;
int start = max((int)(!sign), End - WIDTH); //防止越界
sscanf(str.substr(start, End - start).c_str(), "%d", &x);
num.push_back(x);
}
cutLeadingZero();
return *this;
}
BigInteger &operator=(const BigInteger &tmp)
{
num = tmp.num;
sign = tmp.sign;
length = tmp.length;
return *this;
}
//绝对值
BigInteger abs() const
{
BigInteger ans(*this);
ans.sign = true;
return ans;
}
//正号
const BigInteger &operator+() const { return *this; }
//负号
BigInteger operator-() const
{
BigInteger ans(*this);
if (ans != 0)
ans.sign = !ans.sign;
return ans;
}
// + 运算符
BigInteger operator+(const BigInteger &b) const
{
if (!b.sign)
{
return *this - (-b);
}
if (!sign)
{
return b - (-*this);
}
BigInteger ans;
ans.num.clear();
for (int i = 0, g = 0;; i++)
{
if (g == 0 && i >= num.size() && i >= b.num.size())
break;
int x = g;
if (i < num.size())
x += num[i];
if (i < b.num.size())
x += b.num[i];
ans.num.push_back(x % BASE);
g = x / BASE;
}
ans.cutLeadingZero();
return ans;
}
// - 运算符
BigInteger operator-(const BigInteger &b) const
{
if (!b.sign)
{
return *this + (-b);
}
if (!sign)
{
return -((-*this) + b);
}
if (*this < b)
{
return -(b - *this);
}
BigInteger ans;
ans.num.clear();
for (int i = 0, g = 0;; i++)
{
if (g == 0 && i >= num.size() && i >= b.num.size())
break;
int x = g;
g = 0;
if (i < num.size())
x += num[i];
if (i < b.num.size())
x -= b.num[i];
if (x < 0)
{
x += BASE;
g = -1;
}
ans.num.push_back(x);
}
ans.cutLeadingZero();
return ans;
}
// * 运算符
BigInteger operator*(const BigInteger &b) const
{
int lena = num.size(), lenb = b.num.size();
BigInteger ans;
for (int i = 0; i < lena + lenb; i++)
ans.num.push_back(0);
for (int i = 0, g = 0; i < lena; i++)
{
g = 0;
for (int j = 0; j < lenb; j++)
{
long long x = ans.num[i + j];
x += (long long)num[i] * (long long)b.num[j];
ans.num[i + j] = x % BASE;
g = x / BASE;
ans.num[i + j + 1] += g;
}
}
ans.cutLeadingZero();
ans.sign = (ans.length == 1 && ans.num[0] == 0) || (sign == b.sign);
return ans;
}
//*10^n 大数除大数中用到
BigInteger e(size_t n) const
{
int tmp = n % WIDTH;
BigInteger ans;
ans.length = n + 1;
n /= WIDTH;
while (ans.num.size() <= n)
ans.num.push_back(0);
ans.num[n] = 1;
while (tmp--)
ans.num[n] *= 10;
return ans * (*this);
}
// /运算符 (大数除大数)
BigInteger operator/(const BigInteger &b) const
{
BigInteger aa((*this).abs());
BigInteger bb(b.abs());
if (aa < bb)
return 0;
char *str = new char[aa.length + 1];
memset(str, 0, sizeof(char) * (aa.length + 1));
BigInteger tmp;
int lena = aa.length, lenb = bb.length;
for (int i = 0; i <= lena - lenb; i++)
{
tmp = bb.e(lena - lenb - i);
while (aa >= tmp)
{
str[i]++;
aa = aa - tmp;
}
str[i] += '0';
}
BigInteger ans(str);
delete[] str;
ans.sign = (ans == 0 || sign == b.sign);
return ans;
}
// %运算符
BigInteger operator%(const BigInteger &b) const
{
return *this - *this / b * b;
}
// ++ 运算符
BigInteger &operator++()
{
*this = *this + 1;
return *this;
}
// -- 运算符
BigInteger &operator--()
{
*this = *this - 1;
return *this;
}
// += 运算符
BigInteger &operator+=(const BigInteger &b)
{
*this = *this + b;
return *this;
}
// -= 运算符
BigInteger &operator-=(const BigInteger &b)
{
*this = *this - b;
return *this;
}
// *=运算符
BigInteger &operator*=(const BigInteger &b)
{
*this = *this * b;
return *this;
}
// /= 运算符
BigInteger &operator/=(const BigInteger &b)
{
*this = *this / b;
return *this;
}
// %=运算符
BigInteger &operator%=(const BigInteger &b)
{
*this = *this % b;
return *this;
}
// < 运算符
bool operator<(const BigInteger &b) const
{
if (sign != b.sign) //正负,负正
{
return !sign;
}
else if (!sign && !b.sign) //负负
{
return -b < -*this;
}
//正正
if (num.size() != b.num.size())
return num.size() < b.num.size();
for (int i = num.size() - 1; i >= 0; i--)
if (num[i] != b.num[i])
return num[i] < b.num[i];
return false;
}
bool operator>(const BigInteger &b) const { return b < *this; } // > 运算符
bool operator<=(const BigInteger &b) const { return !(b < *this); } // <= 运算符
bool operator>=(const BigInteger &b) const { return !(*this < b); } // >= 运算符
bool operator!=(const BigInteger &b) const { return b < *this || *this < b; } // != 运算符
bool operator==(const BigInteger &b) const { return !(b < *this) && !(*this < b); } //==运算符
// 逻辑运算符
bool operator||(const BigInteger &b) const { return *this != 0 || b != 0; } // || 运算符
bool operator&&(const BigInteger &b) const { return *this != 0 && b != 0; } // && 运算符
bool operator!() { return (bool)(*this == 0); } // ! 运算符
//重载<<使得可以直接输出大数
friend ostream &operator<<(ostream &out, const BigInteger &x)
{
if (!x.sign)
out << '-';
out << x.num.back();
for (int i = x.num.size() - 2; i >= 0; i--)
{
char buf[10];
//如WIDTH和BASR有变化,此处要修改为%0(WIDTH)d
sprintf(buf, "%08d", x.num[i]);
for (int j = 0; j < strlen(buf); j++)
out << buf[j];
}
return out;
}
//重载>>使得可以直接输入大数
friend istream &operator>>(istream &in, BigInteger &x)
{
string str;
in >> str;
size_t len = str.size();
int start = 0;
if (str[0] == '-')
start = 1;
if (str[start] == '\0')
return in;
for (int i = start; i < len; i++)
{
if (str[i] < '0' || str[i] > '9')
return in;
}
x.sign = !start;
x = str.c_str();
return in;
}
};
BigInteger zero(0ll);
BigInteger n;
BigInteger gcd(BigInteger a,BigInteger b)
{
return b==zero?a:gcd(b,a%b);
}
int main()
{
oula();
int t;
scanf("%d",&t);
while(t--)
{
cin>>n;
BigInteger fz(1ll),fm(1ll);
int i=0;
while(fz*BigInteger(prime[i])<=n)
{
fz*=BigInteger(prime[i]);
fm*=BigInteger(prime[i]+1);
++i;
}
BigInteger tmp=gcd(fz,fm);
fz/=tmp,fm/=tmp;
cout<<fz<<"/"<<fm<<endl;
}
return 0;
}