卷积的理解

一直以来对卷积都是不能深入理解,最近看到一篇文章很好就学习了,下面是简单的一维卷积运算:

1.卷积是一种数学运算,它对两个函数(信号)乘积进行积分,其中一个信号是被翻转。例如下面我们对2个信号f(t)和g(t)进行卷积。


首先要做的是水平翻转(180度)信号g,然后将翻转后的g滑过f,对应相乘并累加所有的值。 
conv(a,b)== conv(b,a)的结果是一样的, 

在这种情况下,规定蓝色信号 F(τ)F(τ) 是我们的输入信号和 G(t )G(Ť) 作为我们的卷积核,当使用卷积来过滤信号时使用术语卷积核。

一维卷积的情况下,输出尺寸计算如下: 

outputSize=(InputSize−KernelSize)+1

应用

滤波器信号(1D音频,2D图像处理)
检查一个信号与另一个信号的相关程度

在信号中查找模式

2.在matlab和python(numpy)中的简单例子

下面我们将两个信号x =(0,1,2,3,4)与w =(1,-1,2)进行卷积。



3.为了更好地理解卷积的概念,我们手工完成上面的例子。我们要卷积2个信号(x,w)。首先是水平翻转W(或向左旋转180度) 


之后,我们将翻转的W滑过输入X. 


注意到在步骤3,4,5中,翻转后的窗口完全位于输入信号的内部。称为“有效”卷积。在翻转窗口不完全位于输入窗口(X)内部的情况下,我们可以将其视为零,只计算位于窗口内的数据,例如在步骤1中,我们将1乘以零,其余部分将被忽略。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值