Problem 26
A unit fraction contains 1 in the numerator. The decimal representation of the unit fractions with denominators 2 to 10 are given:
1/2= 0.5
1/3= 0.(3)
1/4= 0.25
1/5= 0.2
1/6= 0.1(6)
1/7= 0.(142857)
1/8= 0.125
1/9= 0.(1)
1/10= 0.1
Where 0.1(6) means 0.166666…, and has a 1-digit recurring cycle. It can be seen that 1/7 has a 6-digit recurring cycle.
Find the value of d < 1000 for which 1/d contains the longest recurring cycle in its decimal fraction part.
# 找到 d<1000, 1/d 写成小数后拥有最长循环节的d。
def recur_cycle(n):
reminder = 1
re_list = [1]
while True:
reminder = reminder*10 % n
if reminder in re_list:
length = len(re_list) - re_list.index(reminder)
return length
else:
re_list.append(reminder)
longest = 0
num = 0
for i in range(2,1000):
if longest < recur_cycle(i):
longest = recur_cycle(i)
num = i
print(longest,num)
print(recur_cycle(7))
思路:分子为上一次除法的余数乘10,将余数存于列表中,当出现一个重复的余数时,循环节产生
结果:983 has a 982-digit recurring cycle.