Project Euler Problem 18

本文介绍了一种通过动态规划解决数字三角形中寻找从顶到底的最大路径和的方法。使用Python和NumPy库实现了算法,并给出了具体示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem 18

By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.

3
7 4
2 4 6
8 5 9 3

That is, 3 + 7 + 4 + 9 = 23.

Find the maximum total from top to bottom of the triangle below:

75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23

NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67, is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o)
# 在数字三角形中,从顶到底,各条路径上数字之和最大是多少?
思路:使用动态规划
import numpy as np

data_arr = np.array([
[75, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[95,64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[17,47,82, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[18,35,87,10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[20, 4,82,47,65, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[19, 1,23,75, 3,34, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[88, 2,77,73, 7,63,67, 0, 0, 0, 0, 0, 0, 0, 0],
[99,65, 4,28, 6,16,70,92, 0, 0, 0, 0, 0, 0, 0],
[41,41,26,56,83,40,80,70,33, 0, 0, 0, 0, 0, 0],
[41,48,72,33,47,32,37,16,94,29, 0, 0, 0, 0, 0],
[53,71,44,65,25,43,91,52,97,51,14, 0, 0, 0, 0],
[70,11,33,28,77,73,17,78,39,68,17,57, 0, 0, 0],
[91,71,52,38,17,14,91,43,58,50,27,29,48, 0, 0],
[63,66, 4,68,89,53,67,30,73,16,69,87,40,31, 0],
[ 4,62,98,27,23, 9,70,98,73,93,38,53,60, 4,23]])

for i in range(1,15):
    for j in range(i+1):
        if j == 0:
            data_arr[i][j] += data_arr[i-1][j]
        else:
            data_arr[i][j] += max(data_arr[i-1][j-1],data_arr[i-1][j])
print(max(data_arr[14][:]))
结果:1074
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值