Conditional Generative Adversarial Nets论文笔记

论文地址:Conditional Generative Adversarial Nets


2014年,Goodfellow提出了Generative Adversarial Networks,在论文的最后他指出了GAN的优缺点以及未来的研究方向和拓展,其中他提到的第一点拓展就是:A conditional generative model p(x|c) can be obtained by adding c as input to both G and D。这是因为这种不需要预先建模的方法缺点是太过自由了,对于较大的图片,较多的pixel的情形,基于简单 GAN 的方式就不太可控了。于是我们希望得到一种条件型的生成对抗网络,通过给GAN中的G和D增加一些条件性的约束,来解决训练太自由的问题。于是同年,Mirza等人就提出了一种Conditional Generative Adversarial Networks,这是一种带条件约束的生成对抗模型,它在生成模型(G)和判别模型(D)的建模中均引入了条件变量y,这里y可以是label,可以是tags,可以是来自不同模态是数据,甚至可以是一张图片,使用这个额外的条件变量,对于生成器对数据的生成具有指导作用,因此,Conditional Generative Adversarial Networks也可以看成是把无监督的GAN变成有监督模型的一种改进,这个改进也被证明是非常有效的,为后续的相关工作提供了指导作用。


在之前的文章中,我们提到了Generative Adversarial Networks实际上是对D和G解决以下极小化极大的二元博弈问题:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值