三角形最小路径和(经典DP / dfs+记忆化)

(偷懒中……)

给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。

相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。

例如,给定三角形:

[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]

自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。

说明:

如果你可以只使用 O(n) 的额外空间(n 为三角形的总行数)来解决这个问题,那么你的算法会很加分

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/triangle
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

其实和这题不同路径2有点像

直接用dfs,如果数据过大,肯定超时。下面直接用甜姨的代码,我只想了下大致的思路,而没去写(最近有点累)。

class Solution {
    public int minimumTotal(List<List<Integer>> triangle) {
        return  dfs(triangle, 0, 0);
    }

    private int dfs(List<List<Integer>> triangle, int i, int j) {
        if (i == triangle.size()) {
            return 0;
        }
        return Math.min(dfs(triangle, i + 1, j), dfs(triangle, i + 1, j + 1)) + triangle.get(i).get(j);
    }
}


作者:sweetiee
链接:https://leetcode-cn.com/problems/triangle/solution/di-gui-ji-yi-hua-dp-bi-xu-miao-dong-by-sweetiee/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

超时的原因是:大量的重复搜索,所以可以进行记忆化优化,优化的方式和不同路径2一样。下面也是甜姨的代码

class Solution {
    Integer[][] memo;
    public int minimumTotal(List<List<Integer>> triangle) {
        memo = new Integer[triangle.size()][triangle.size()];
        return  dfs(triangle, 0, 0);
    }

    private int dfs(List<List<Integer>> triangle, int i, int j) {
        if (i == triangle.size()) {
            return 0;
        }
        if (memo[i][j] != null) {
            return memo[i][j];
        }
        return memo[i][j] = Math.min(dfs(triangle, i + 1, j), dfs(triangle, i + 1, j + 1)) + triangle.get(i).get(j);
    }
}


作者:sweetiee
链接:https://leetcode-cn.com/problems/triangle/solution/di-gui-ji-yi-hua-dp-bi-xu-miao-dong-by-sweetiee/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

最后就是DP了,这道题的状态转移方程其实很好想,采用备忘录的方式,用局部最优解出全局最优。

dp[i][j] 表示从点 (i,j)(i, j)(i,j) 到底边的最小路径和,

dp[i][j]=min(dp[i+1][j],dp[i+1][j+1])+triangle[i][j]。

据说本题是一道非常经典且历史悠久的动态规划题,其作为算法题出现,最早可以追溯到 1994 年的 IOI(国际信息学奥林匹克竞赛)的 The Triangle。时光飞逝,经过 20 多年的沉淀,往日的国际竞赛题如今已经变成了动态规划的入门必做题。

下图来自爆破天使组。

下面是甜姨的代码,自底向上的写法。

class Solution {
    public int minimumTotal(List<List<Integer>> triangle) {
        int n = triangle.size();
        // dp[i][j] 表示从点 (i, j) 到底边的最小路径和。
        int[][] dp = new int[n + 1][n + 1];
        // 从三角形的最后一行开始递推。
        for (int i = n - 1; i >= 0; i--) {
            for (int j = 0; j <= i; j++) {
                dp[i][j] = Math.min(dp[i + 1][j], dp[i + 1][j + 1]) + triangle.get(i).get(j);
            }
        }
        return dp[0][0];
    }
}


作者:sweetiee
链接:https://leetcode-cn.com/problems/triangle/solution/di-gui-ji-yi-hua-dp-bi-xu-miao-dong-by-sweetiee/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

空间优化:triangle数组原地DP。代码来自甜姨。

class Solution {
    public int minimumTotal(List<List<Integer>> triangle) {
        int n = triangle.size();
        int[] dp = new int[n + 1];
        for (int i = n - 1; i >= 0; i--) {
            for (int j = 0; j <= i; j++) {
                dp[j] = Math.min(dp[j], dp[j + 1]) + triangle.get(i).get(j);
            }
        }
        return dp[0];
    }
}


作者:sweetiee
链接:https://leetcode-cn.com/problems/triangle/solution/di-gui-ji-yi-hua-dp-bi-xu-miao-dong-by-sweetiee/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值