使用MATLAB进行一次和二次规划问题求解

本文介绍如何使用linprog和quadprog函数解决线性和二次规划问题,包括定义约束条件、目标函数,并展示如何获取解决方案及拉格朗日乘子。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于一次问题,可以使用linprog函数,例如

Find x that minimizes 


f(x) = –5x1 –4x2 –6x3,


subject to


x1 – x2 + x3 ≤20
3x1 +2x2 + 4x3 ≤42
3x1 +2x2 ≤ 30
0≤ x1, 0 ≤ x2,0 ≤ x3.


First, enter the coefficients
f = [-5; -4; -6];
A =  [1 -1  1
      3  2  4
      3  2  0];
b = [20; 42; 30];
lb = zeros(3,1);


Next, call a linear programming routine.
[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb);


Examine the solution and Lagrange multipliers:
x,lambda.ineqlin,lambda.lower


x = 
     0.0000
    15.0000
     3.0000


ans =
     0.0000
     1.5000
     0.5000


ans =
     1.0000
     0.0000
     0.0000


Nonzero elements of the vectors in the fields of lambda indicateactive constraints at the solution. In this case, the second and thirdinequality constraints (in lambda.ineqlin) andthe first lower bound constraint (in lambda.lower)are active constraints (i.e., the solution is on their constraintboundaries).


对于二次问题,可以使用quadprog函数,例如

Solve a simple quadratic programming problem: find values of x thatminimize






subject to


x1 + x2 ≤2
–x1 +2x2 ≤ 2
2x1 + x2 ≤3
0 ≤ x1,0 ≤ x2.


In matrix notation this is






where 




H可以通过将关于x1,x2的二次项用syms表示,然后调用hessian函数,得到sym的H矩阵,通过double(H)转换为数值型矩阵。


Compute the Hessian of this function of three variables:
syms x y z
f = x*y + 2*z*x;
hessian(f)


ans =
[ 0, 1, 2]
[ 1, 0, 0]
[ 2, 0, 0]



1.Enter the coefficient matrices:
H = [1 -1; -1 2]; 
f = [-2; -6];
A = [1 1; -1 2; 2 1];
b = [2; 2; 3];
lb = zeros(2,1);




2.Set the options to use the 'active-set' algorithmwith no display:
opts = optimoptions('quadprog','Algorithm','active-set','Display','off');




3.Call quadprog:
[x,fval] = quadprog(H,f,A,b,[],[],lb,[],[])




4.Examine the final point, function value, and exitflag:
 x,fval,exitflag


x =
    0.6667
    1.3333


fval =
   -8.2222


exitflag =
     1




An exit flag of 1 means the resultis a local minimum. Because H is a positive definitematrix, this problem is convex, so the minimum is a global minimum.You can see H is positive definite by noting allits eigenvalues are positive:
eig(H)
ans =
    0.3820
    2.6180

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值