扩展卡尔曼滤波EKF
如果将置信度和噪声限制为高斯分布,并且对运动模型和观测进行线性化,计算贝叶斯滤波中的积分(以及归一化积),即可得到扩展卡尔曼滤波(EKF)。
为了推导EKF,首先假设 xk\boldsymbol{x}_{k}xk 的置信度函数限制为高斯分布:
p(xk∣xˇ0,v1:k,y0:k)=N(x^k,P^k) p\left(\boldsymbol{x}_{k} \mid \check{\boldsymbol{x}}_{0}, \boldsymbol{v}_{1: k}, \boldsymbol{y}_{0: k}\right)=\mathcal{N}\left(\hat{\boldsymbol{x}}_{k}, \hat{\boldsymbol{P}}_{k}\right) p(xk∣xˇ0,v1:k,y0:k)=N(x^k,P^k)
其中,x^k\hat{\boldsymbol{x}}_{k}x^k 为均值,P^k\hat{\boldsymbol{P}}_{k}P^k 为协方差。
并且假设噪声变量 wk\boldsymbol{w}_{k}wk 和 nk\boldsymbol{n}_{k}nk 也是高斯分布的:
wk∼N(0,Qk)nk∼N(0,Rk) \begin{array}{l}\boldsymbol{w}_{k} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{Q}_{k}\right) \\\boldsymbol{n}_{k} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{R}_{k}\right)\end{array} wk∼N(0,Qk)nk∼N(0,Rk)
对于以下运动和观测模型:
xk=f(xk−1,vk,wk)yk=g(xk,nk) \begin{aligned}&\boldsymbol{x}_{k}=f\left(\boldsymbol{x}_{k-1}, \boldsymbol{v}_{k},\boldsymbol{w}_{k}\right) \\&\boldsymbol{y}_{k}=g\left(\boldsymbol{x}_{k}, \boldsymbol{n}_{k}\right)\end{aligned} xk=f(xk−1,vk,wk)yk=g(xk,nk)
由于 f(⋅)\boldsymbol{f}(\cdot)f(⋅) 和 g(⋅)\boldsymbol{g}(\cdot)g(⋅) 是非线性函数,所以我们需要对其进行线性化。在当前状态的均值处展开,对运动和观测模型进行线性化:
f(xk−1,vk,wk)≈xˇk+Fk−1(xk−1−x^k−1)+wk′ \boldsymbol{f}\left(\boldsymbol{x}_{k-1}, \boldsymbol{v}_{k}, \boldsymbol{w}_{k}\right) \approx \check{\boldsymbol{x}}_{k}+\boldsymbol{F}_{k-1}\left(\boldsymbol{x}_{k-1}-\hat{\boldsymbol{x}}_{k-1}\right)+\boldsymbol{w}_{k}^{\prime} f(xk−1,vk,wk)≈xˇk+Fk−1(xk−1−x^k−1)+wk′
g(xk,nk)≈yˇk+Gk(xk−xˇk)+nk′ \boldsymbol{g}\left(\boldsymbol{x}_{k}, \boldsymbol{n}_{k}\right) \approx \check{\boldsymbol{y}}_{k}+\boldsymbol{G}_{k}\left(\boldsymbol{x}_{k}-\check{\boldsymbol{x}}_{k}\right)+\boldsymbol{n}_{k}^{\prime} g(xk,nk)≈yˇk+Gk(xk−xˇk)+nk′
其中:
- xˇk=f(x^k−1,vk,0)\check{\boldsymbol{x}}_{k}=\boldsymbol{f}\left(\hat{\boldsymbol{x}}_{k-1}, \boldsymbol{v}_{k}, \mathbf{0}\right)xˇk=f(x^k−1,vk,0)
- Fk−1=∂f(xk−1,vk,wk)∂xk−1∣x^k−1,vk,0\boldsymbol{F}_{k-1}=\left.\frac{\partial \boldsymbol{f}\left(\boldsymbol{x}_{k-1}, \boldsymbol{v}_{k}, \boldsymbol{w}_{k}\right)}{\partial \boldsymbol{x}_{k-1}}\right|_{\hat{\boldsymbol{x}}_{k-1}, \boldsymbol{v}_{k}, \mathbf{0}}Fk−1=∂xk−1∂f(xk−1,vk,wk)∣∣x^k−1,vk,0
- wk′=∂f(xk−1,vk,wk)∂wk∣x^k−1,vk,0wk\boldsymbol{w}_{k}^{\prime}=\left.\frac{\partial \boldsymbol{f}\left(\boldsymbol{x}_{k-1}, \boldsymbol{v}_{k}, \boldsymbol{w}_{k}\right)}{\partial \boldsymbol{w}_{k}}\right|_{\hat{\boldsymbol{x}}_{k-1}, \boldsymbol{v}_{k}, \mathbf{0}} \boldsymbol{w}_{k}wk′=∂wk∂f(xk−1,vk,wk)∣∣x^k−1,vk,0wk
- yˇk=g(xˇk,0)\check{\boldsymbol{y}}_{k}=\boldsymbol{g}\left(\check{\boldsymbol{x}}_{k}, \mathbf{0}\right)yˇk=g(xˇk,0)
- Gk=∂g(xk,nk)∂xk∣xˇk,0\boldsymbol{G}_{k}=\left.\frac{\partial \boldsymbol{g}\left(\boldsymbol{x}_{k}, \boldsymbol{n}_{k}\right)}{\partial \boldsymbol{x}_{k}}\right|_{\check{\boldsymbol{x}}_{k}, \mathbf{0}}Gk=∂xk∂g(xk,nk)∣∣xˇk,0
- nk′=∂g(xk,nk)∂nk∣xˇk,0nk\boldsymbol{n}_{k}^{\prime}=\left.\frac{\partial \boldsymbol{g}\left(\boldsymbol{x}_{k}, \boldsymbol{n}_{k}\right)}{\partial \boldsymbol{n}_{k}}\right|_{\check{\boldsymbol{x}}_{k}, \mathbf{0}} \boldsymbol{n}_{k}nk′=∂nk∂g(xk,nk)∣∣xˇk,0nk
给定过去的状态和最新输入,则当前状态 xk\boldsymbol{x}_{k}xk 的统计学特性为:
xk≈xˇk+Fk−1(xk−1−x^k−1)+wk′ \boldsymbol{x}_{k} \approx \check{\boldsymbol{x}}_{k}+\boldsymbol{F}_{k-1}\left(\boldsymbol{x}_{k-1}-\hat{\boldsymbol{x}}_{k-1}\right)+\boldsymbol{w}_{k}^{\prime} xk≈xˇk+Fk−1(xk−1−x^k−1)+wk′
E[xk]≈xˇk+Fk−1(xk−1−x^k−1)+E[wk′]⏟0 E\left[\boldsymbol{x}_{k}\right] \approx \check{\boldsymbol{x}}_{k}+\boldsymbol{F}_{k-1}\left(\boldsymbol{x}_{k-1}-\hat{\boldsymbol{x}}_{k-1}\right)+\underbrace{E\left[\boldsymbol{w}_{k}^{\prime}\right]}_{0} E[xk]≈xˇk+Fk−1(xk−1−x^k−1)+0E[wk′]
E[(xk−E[xk])(xk−E[xk])T]≈E[wk′wk′T]⏟Qk′ E\left[\left(\boldsymbol{x}_{k}-E\left[\boldsymbol{x}_{k}\right]\right)\left(\boldsymbol{x}_{k}-E\left[\boldsymbol{x}_{k}\right]\right)^{\mathrm{T}}\right] \approx \underbrace{E\left[\boldsymbol{w}_{k}^{\prime} \boldsymbol{w}_{k}^{\left.\prime^{\mathrm{T}}\right]}\right.}_{\boldsymbol{Q}_{k}^{\prime}} E[(xk−E[xk])(xk−E[xk])T]≈Qk′E[wk′wk′T]
p(xk∣xk−1,vk)≈N(xˇk+Fk−1(xk−1−x^k−1),Qk′) p\left(\boldsymbol{x}_{k} \mid \boldsymbol{x}_{k-1}, \boldsymbol{v}_{k}\right) \approx \mathcal{N}\left(\check{\boldsymbol{x}}_{k}+\boldsymbol{F}_{k-1}\left(\boldsymbol{x}_{k-1}-\hat{\boldsymbol{x}}_{k-1}\right), \boldsymbol{Q}_{k}^{\prime}\right) p(xk∣xk−1,vk)≈N(xˇk+Fk−1(xk−1−x^k−1),Qk′)
给定当前状态,则当前观测 yˇk\check{\boldsymbol{y}}_{k}yˇk 的统计学特性为:
yk≈yˇk+Gk(xk−xˇk)+nk′ \boldsymbol{y}_{k} \approx \check{\boldsymbol{y}}_{k}+\boldsymbol{G}_{k}\left(\boldsymbol{x}_{k}-\check{\boldsymbol{x}}_{k}\right)+\boldsymbol{n}_{k}^{\prime} yk≈yˇk+Gk(xk−xˇk)+nk′
E[yk]≈yˇk+Gk(xk−xˇk)+E[nk′]⏟0 E\left[\boldsymbol{y}_{k}\right] \approx \check{\boldsymbol{y}}_{k}+\boldsymbol{G}_{k}\left(\boldsymbol{x}_{k}-\check{\boldsymbol{x}}_{k}\right)+\underbrace{E\left[\boldsymbol{n}_{k}^{\prime}\right]}_{0} E[yk]≈yˇk+Gk(xk−xˇk)+0E[nk′]
E[(yk−E[yk])(yk−E[yk])T]≈E[nk′nk′T]⏟Rk′ E\left[\left(\boldsymbol{y}_{k}-E\left[\boldsymbol{y}_{k}\right]\right)\left(\boldsymbol{y}_{k}-E\left[\boldsymbol{y}_{k}\right]\right)^{\mathrm{T}}\right] \approx \underbrace{E\left[\boldsymbol{n}_{k}^{\prime} \boldsymbol{n}_{k}^{\prime \mathrm{T}}\right]}_{\boldsymbol{R}_{k}^{\prime}} E[(yk−E[yk])(yk−E[yk])T]≈Rk′E[nk′nk′T]
p(yk∣xk)≈N(yˇk+Gk(xk−xˇk),Rk′) p\left(\boldsymbol{y}_{k} \mid \boldsymbol{x}_{k}\right) \approx \mathcal{N}\left(\check{\boldsymbol{y}}_{k}+\boldsymbol{G}_{k}\left(\boldsymbol{x}_{k}-\check{\boldsymbol{x}}_{k}\right), \boldsymbol{R}_{k}^{\prime}\right) p(yk∣xk)≈N(yˇk+Gk(xk−xˇk),Rk′)
由贝叶斯滤波器有:
p(xk∣xˇ0,v1:k,y0:k)⏟后验置信度 =ηp(yk∣xk)⏟利用 g(⋅) 进行更新 ∫p(xk∣xk−1,vk)⏟利用 f(⋅) 进行预测 p(xk−1∣xˇ0,v1:k−1,y0:k−1)⏟先验置信度 dxk−1 \begin{aligned}& \underbrace{p\left(\boldsymbol{x}_{k} \mid \check{\boldsymbol{x}}_{0}, \boldsymbol{v}_{1: k}, \boldsymbol{y}_{0: k}\right)}_{\text {后验置信度 }} \\=& \eta \underbrace{p\left(\boldsymbol{y}_{k} \mid \boldsymbol{x}_{k}\right)}_{\text {利用 } \boldsymbol{g}(\cdot) \text { 进行更新 }} \int \underbrace{p\left(\boldsymbol{x}_{k} \mid \boldsymbol{x}_{k-1}, \boldsymbol{v}_{k}\right)}_{\text {利用 } \boldsymbol{f}(\cdot) \text { 进行预测 }} \underbrace{p\left(\boldsymbol{x}_{k-1} \mid \check{\boldsymbol{x}}_{0}, \boldsymbol{v}_{1: k-1}, \boldsymbol{y}_{0: k-1}\right)}_{\text {先验置信度 }} \mathrm{d} \boldsymbol{x}_{k-1}\end{aligned} =后验置信度 p(xk∣xˇ0,v1:k,y0:k)η利用 g(⋅) 进行更新 p(yk∣xk)∫利用 f(⋅) 进行预测 p(xk∣xk−1,vk)先验置信度 p(xk−1∣xˇ0,v1:k−1,y0:k−1)dxk−1
将线性化之后的运动和观测模型代入到贝叶斯滤波器中,有:
p(xk∣xˇ0,v1:k,y0:k)⏟N(x^k,P^k)=ηp(yk∣xk)⏟N(yˇk+Gk(xk−xˇk),Rk′)×∫p(xk∣xk−1,vk)⏟N(xˇk+Fk−1(xk−1−x^k−1),Qk′)p(xk−1∣xˇ0,v1:k−1,y0:k−1)⏟N(x^k−1,P^k−1)dxk−1 \begin{array}{l}\underbrace{p\left(\boldsymbol{x}_{k} \mid \check{\boldsymbol{x}}_{0}, \boldsymbol{v}_{1: k}, \boldsymbol{y}_{0: k}\right)}_{\mathcal{N}\left(\hat{\boldsymbol{x}}_{k}, \hat{\boldsymbol{P}}_{k}\right)}=\eta \underbrace{p\left(\boldsymbol{y}_{k} \mid \boldsymbol{x}_{k}\right)}_{\mathcal{N}\left(\check{\boldsymbol{y}}_{k}+\boldsymbol{G}_{k}\left(\boldsymbol{x}_{k}-\check{\boldsymbol{x}}_{k}\right), \boldsymbol{R}_{k}^{\prime}\right)}\\\times \int \underbrace{p\left(\boldsymbol{x}_{k} \mid \boldsymbol{x}_{k-1}, \boldsymbol{v}_{k}\right)}_{\mathcal{N}\left(\check{\boldsymbol{x}}_{k}+\boldsymbol{F}_{k-1}\left(\boldsymbol{x}_{k-1}-\hat{\boldsymbol{x}}_{k-1}\right), \boldsymbol{Q}_{k}^{\prime}\right)} \underbrace{p\left(\boldsymbol{x}_{k-1} \mid \check{\boldsymbol{x}}_{0}, \boldsymbol{v}_{1: k-1}, \boldsymbol{y}_{0: k-1}\right)}_{\mathcal{N}\left(\hat{\boldsymbol{x}}_{k-1}, \hat{\boldsymbol{P}}_{k-1}\right)} \mathrm{d} \boldsymbol{x}_{k-1}\end{array} N(x^k,P^k)p(xk∣xˇ0,v1:k,y0:k)=ηN(yˇk+Gk(xk−xˇk),Rk′)p(yk∣xk)×∫N(xˇk+Fk−1(xk−1−x^k−1),Qk′)p(xk∣xk−1,vk)N(x^k−1,P^k−1)p(xk−1∣xˇ0,v1:k−1,y0:k−1)dxk−1
将服从高斯分布的变量传入到非线性函数中,积分之后仍然服从高斯分布:
p(xk∣xˇ0,v1:k,y0:k)⏟N(x^k,P^k)=ηp(yk∣xk)⏟N(yˇk+Gk(xk−xˇk),Rk′)×∫p(xk∣xk−1,vk)p(xk−1∣xˇ0,v1:k−1,y0:k−1)dxk−1⏟N(xˇk,Fk−1P^k−1Fk−1T+Qk′) \begin{array}{l}\underbrace{p\left(\boldsymbol{x}_{k} \mid \check{\boldsymbol{x}}_{0}, \boldsymbol{v}_{1: k}, \boldsymbol{y}_{0: k}\right)}_{\mathcal{N}\left(\hat{\boldsymbol{x}}_{k}, \hat{\boldsymbol{P}}_{k}\right)}=\eta \underbrace{p\left(\boldsymbol{y}_{k} \mid \boldsymbol{x}_{k}\right)}_{\mathcal{N}\left(\check{\boldsymbol{y}}_{k}+\boldsymbol{G}_{k}\left(\boldsymbol{x}_{k}-\check{\boldsymbol{x}}_{k}\right), \boldsymbol{R}_{k}^{\prime}\right)} \\\times \underbrace{\int p\left(\boldsymbol{x}_{k} \mid \boldsymbol{x}_{k-1}, \boldsymbol{v}_{k}\right) p\left(\boldsymbol{x}_{k-1} \mid \check{\boldsymbol{x}}_{0}, \boldsymbol{v}_{1: k-1}, \boldsymbol{y}_{0: k-1}\right) \mathrm{d} \boldsymbol{x}_{k-1}}_{\mathcal{N}\left(\check{\boldsymbol{x}}_{k}, \boldsymbol{F}_{k-1} \hat{\boldsymbol{P}}_{k-1} \boldsymbol{F}_{k-1}^{\mathrm{T}}+\boldsymbol{Q}_{k}^{\prime}\right)}\end{array} N(x^k,P^k)p(xk∣xˇ0,v1:k,y0:k)=ηN(yˇk+Gk(xk−xˇk),Rk′)p(yk∣xk)×N(xˇk,Fk−1P^k−1Fk−1T+Qk′)∫p(xk∣xk−1,vk)p(xk−1∣xˇ0,v1:k−1,y0:k−1)dxk−1
再利用高斯概率密度函数的归一化积的性质,有:
p(xk∣xˇ0,v1:k,y0:k)⏟N(x^k,P^k)=ηp(yk∣xk)∫p(xk∣xk−1,vk)p(xk−1∣xˇ0,v1:k−1,y0:k−1)dxk−1⏟N(xˇk+Kk(yk−yˇk),(1−KkGk)(Fk−1P^k−1Fk−1T+Qk′)) \begin{aligned}\underbrace{p\left(\boldsymbol{x}_{k} \mid \check{\boldsymbol{x}}_{0}, \boldsymbol{v}_{1: k}, \boldsymbol{y}_{0: k}\right)}_{\mathcal{N}\left(\hat{\boldsymbol{x}}_{k}, \hat{\boldsymbol{P}}_{k}\right)} =& \underbrace{\eta p\left(\boldsymbol{y}_{k} \mid \boldsymbol{x}_{k}\right) \int p\left(\boldsymbol{x}_{k} \mid \boldsymbol{x}_{k-1}, \boldsymbol{v}_{k}\right) p\left(\boldsymbol{x}_{k-1} \mid \check{\boldsymbol{x}}_{0}, \boldsymbol{v}_{1: k-1}, \boldsymbol{y}_{0: k-1}\right) \mathrm{d} \boldsymbol{x}_{k-1}}_{\mathcal{N}\left(\check{\boldsymbol{x}}_{k}+\boldsymbol{K}_{k}\left(\boldsymbol{y}_{k}-\check{\boldsymbol{y}}_{k}\right),\left(\mathbf{1}-\boldsymbol{K}_{k} \boldsymbol{G}_{k}\right)\left(\boldsymbol{F}_{k-1} \hat{\boldsymbol{P}}_{k-1} \boldsymbol{F}_{k-1}^{\mathrm{T}}+\boldsymbol{Q}_{k}^{\prime}\right)\right)}\end{aligned} N(x^k,P^k)p(xk∣xˇ0,v1:k,y0:k)=N(xˇk+Kk(yk−yˇk),(1−KkGk)(Fk−1P^k−1Fk−1T+Qk′))ηp(yk∣xk)∫p(xk∣xk−1,vk)p(xk−1∣xˇ0,v1:k−1,y0:k−1)dxk−1
其中,Kk\boldsymbol{K}_{k}Kk 为卡尔曼增益。比较上面式子的左右两侧,有:
预测
xˇk=f(x^k−1,vk,0) \check{\boldsymbol{x}}_{k} =\boldsymbol{f}\left(\hat{\boldsymbol{x}}_{k-1}, \boldsymbol{v}_{k}, \mathbf{0}\right) xˇk=f(x^k−1,vk,0)
Pˇk=Fk−1P^k−1Fk−1T+Qk′ \check{\boldsymbol{P}}_{k} =\boldsymbol{F}_{k-1} \hat{\boldsymbol{P}}_{k-1} \boldsymbol{F}_{k-1}^{\mathrm{T}}+\boldsymbol{Q}_{k}^{\prime} Pˇk=Fk−1P^k−1Fk−1T+Qk′
卡尔曼增益
Kk=PˇkGkT(GkPˇkGkT+Rk′)−1 \boldsymbol{K}_{k} =\check{\boldsymbol{P}}_{k} \boldsymbol{G}_{k}^{\mathrm{T}}\left(\boldsymbol{G}_{k} \check{\boldsymbol{P}}_{k} \boldsymbol{G}_{k}^{\mathrm{T}}+\boldsymbol{R}_{k}^{\prime}\right)^{-1} Kk=PˇkGkT(GkPˇkGkT+Rk′)−1
更新
x^k=xˇk+Kk(yk−g(xˇk,0))⏟更新量 \hat{\boldsymbol{x}}_{k} =\check{\boldsymbol{x}}_{k}+\boldsymbol{K}_{k} \underbrace{\left(\boldsymbol{y}_{k}-\boldsymbol{g}\left(\check{\boldsymbol{x}}_{k}, \mathbf{0}\right)\right)}_{\text {更新量 }} x^k=xˇk+Kk更新量 (yk−g(xˇk,0))
P^k=(1−KkGk)Pˇk \hat{\boldsymbol{P}}_{k} =\left(\mathbf{1}-\boldsymbol{K}_{k} \boldsymbol{G}_{k}\right) \check{\boldsymbol{P}}_{k} P^k=(1−KkGk)Pˇk