数学复习(4)三角学

三角学基本概念

弧度和角度的转换

  1. 基本定义

    • 弧度:基于单位圆周长(2π)的角的度量单位。
    • 角度:传统的角的度量单位(360° 为一周)。
    • 核心关系:π 弧度 = 180°,即 1 弧度 ≈ 57.3°1° ≈ 0.01745 弧度
  2. 转换公式

    • 角度转弧度:弧度 = 角度 × (π/180)
      示例:60° = 60 × (π/180) = π/3 弧度。
    • 弧度转角度:角度 = 弧度 × (180/π)
      示例:3π/4 弧度 = (3π/4) × (180/π) = 135°。
  3. 常见角度对应表

    角度(°)30°45°60°90°180°270°360°
    弧度0π/6π/4π/3π/2π3π/2
    • 总结:弧度与角度通过 π=180° 关联,掌握转换公式和常见角度对应关系是理解三角函数和微积分的基础。

    • 关键记忆点

      • 0°, 90°, 180°, 270°, 360° 分别对应 0, π/2, π, 3π/2, 2π 弧度。
      • 转换时注意单位符号(° 或无符号为弧度),避免混淆。
      • 利用 “π=180°” 简化计算,例如:
        • 120° = 2π/3 弧度(120 ÷ 60 = 2,180° ÷ 3 = 60°)。
        • 5π/6 弧度 = 150°(5 × 30° = 150°)。

三角函数定义

  1. 基本定义(直角三角形视角)
    在直角三角形中,对锐角 θ:

    • 正弦(sinθ) = 对边 / 斜边
    • 余弦(cosθ) = 邻边 / 斜边
    • 正切(tanθ) = 对边 / 邻边
    • 余割(cscθ) = 1/sinθ
    • 正割(secθ) = 1/cosθ
    • 余切(cotθ) = 1/tanθ
  2. 单位圆定义(扩展至任意角)
    在单位圆(半径为 1 的圆)上,角 θ 的终边与单位圆交于点(x,y),则:

    • sinθ=y,cosθ=x,tanθ=y/x(x=0)
    • 其他函数:cscθ=1/y,secθ=1/x,cotθ=x/y
  3. 定义域与值域

    函数定义域值域
    sinθ所有实数[−1,1]
    cosθ所有实数[−1,1]
    tanθθ=π/2+kπ(k 为整数)所有实数
    cscθθ=kπ(−∞,−1]∪[1,+∞)
    secθθ=π/2+kπ(−∞,−1]∪[1,+∞)
    cotθθ=kπ所有实数
  4. 符号规则(象限分析)

    • 第一象限(0 < θ < π/2):sinθ、cosθ、tanθ 均为正。
    • 第二象限(π/2 < θ < π):sinθ 正,其余负。
    • 第三象限(π < θ < 3π/2):tanθ 正,其余负。
    • 第四象限(3π/2 < θ < 2π):cosθ 正,其余负。
  5. 特殊角度的值
    需熟记以下角度的三角函数值(单位:弧度):

    θ0π/6π/4π/3π/2
    sinθ01/2√2/2√3/21
    cosθ1√3/2√2/21/20
    tanθ0√3/31√3无定义

核心应用:三角函数广泛用于几何、物理、工程等领域,描述周期性现象(如声波、交流电)和角度与边长的关系。在微积分中,它们是求导、积分和级数展开的基础。

常用三角函数数值

核心角度与对应值

角度(弧度)0π/6π/4π/3π/2
sinθ01/2√2/2√3/21
cosθ1√3/2√2/21/20
tanθ0√3/31√3无定义

其他常见角度扩展

角度(弧度)π3π/2
sinθ0-10
cosθ-101
tanθ0无定义0

记忆技巧

  1. 30°-60°-90° 三角形(对应 π/6、π/3、π/2):

    • 边长比为 1 : √3 : 2,对应:
      • sin(π/6) = 1/2,sin(π/3) = √3/2
      • cos(π/6) = √3/2,cos(π/3) = 1/2
  2. 45°-45°-90° 三角形(对应 π/4):

    • 边长比为 1 : 1 : √2,对应:
      • sin(π/4) = cos(π/4) = √2/2
      • tan(π/4) = 1
  3. 单位圆对称性

    • 角度 π - θ、π + θ、2π - θ 的三角函数值可通过对称性推导(结合符号规则)。

应用场景

  • 微积分:快速计算导数、积分、级数展开。
  • 几何与物理:求解三角形边长、周期性现象(如波动、振动)。
  • 工程与计算机:图形学、信号处理、角度转换。

三角函数的定义域简介

单位圆与象限分析

单位圆的定义

  • 定义:以原点为中心,半径为 1 的圆,方程为 x2+y2=1。
  • 作用:任意角 θ 的终边与单位圆的交点坐标为 (x,y),直接对应三角函数值:
    cosθ=x,sinθ=y,tanθ=xy​.

二、象限划分与角度范围

  • 四个象限(逆时针标记):
    • 第一象限:0<θ<2π​(0∘<θ<90∘)
    • 第二象限:2π​<θ<π(90∘<θ<180∘)
    • 第三象限:π<θ<23π​(180∘<θ<270∘)
    • 第四象限:23π​<θ<2π(270∘<θ<360∘)
  • 周期性:角度每增加 2π,终边位置重复。

三、参考角的计算

  • 定义:角度 θ 的终边与 x 轴 之间的最小正角,范围为 0≤参考角<2π​。
  • 计算方法
    • 第一象限:参考角 = θ
    • 第二象限:参考角 = π−θ
    • 第三象限:参考角 = θ−π
    • 第四象限:参考角 = 2π−θ

四、三角函数的符号规律

根据角度所在象限,三角函数的符号如下:

象限正弦(sinθ)余弦(cosθ)正切(tanθ)
+++
+--
--+
-+-

记忆口诀
(第一象限全正,第二象限正弦正,第三象限正切正,第四象限余弦正)

五、求解任意角度的三角函数值

步骤总结

  1. 确定角度范围:判断 θ 所在的象限。
  2. 计算参考角:根据象限公式求出参考角 α。
  3. 确定符号:根据象限判断三角函数的正负。
  4. 查表求值:利用参考角 α 的三角函数值,结合符号得到结果。

通过以上要点,可系统分析任意角度的三角函数值,结合单位圆和象限规律,快速求解复杂问题。

三角函数的图像

 正弦函数(y = sin (x))

  • 图像特征:波浪形曲线,周期为 2π,振幅为 1。
  • 关键点(0 ≤ x ≤ 2π):
    • sin(0)=0,sin(π/2)=1,sin(π)=0,sin(3π/2)=−1,sin(2π)=0。
  • 对称性:关于原点对称(奇函数),即 sin(−x)=−sin(x)。
  • 周期性:每隔 2π 重复一次。

2. 余弦函数(y = cos (x))

  • 图像特征:波浪形曲线,周期为 2π,振幅为 1,相位比正弦函数左移 π/2。
  • 关键点(0 ≤ x ≤ 2π):
    • cos(0)=1,cos(π/2)=0,cos(π)=−1,cos(3π/2)=0,cos(2π)=1。
  • 对称性:关于 y 轴对称(偶函数),即 cos(−x)=cos(x)。
  • 周期性:每隔 2π 重复一次。

3. 正切函数(y = tan (x))

  • 图像特征:周期性曲线,周期为 π,在 x=π/2+kπ(k 为整数)处有垂直渐近线。
  • 关键点(-π/2 < x < π/2):
    • tan(0)=0,tan(π/4)=1,tan(−π/4)=−1。
  • 对称性:关于原点对称(奇函数),即 tan(−x)=−tan(x)。
  • 定义域:x=π/2+kπ。

4. 其他三角函数图像

  • 余割函数(y = csc (x)):csc(x)=1/sin(x),图像与正弦函数的倒数对应,在 x=kπ 处有垂直渐近线。
  • 正割函数(y = sec (x)):sec(x)=1/cos(x),图像与余弦函数的倒数对应,在 x=π/2+kπ 处有垂直渐近线。
  • 余切函数(y = cot (x)):cot(x)=1/tan(x),图像与正切函数的倒数对应,周期为 π,在 x=kπ 处有垂直渐近线。

5. 奇偶性与对称性

函数奇偶性对称性描述
sin(x)奇函数关于原点对称
cos(x)偶函数关于 y 轴对称
tan(x)奇函数关于原点对称
csc(x)奇函数关于原点对称
sec(x)偶函数关于 y 轴对称
cot(x)奇函数关于原点对称

6. 应用技巧

  • 周期性:利用 sin(x+2π)=sin(x)、cos(x+2π)=cos(x)、tan(x+π)=tan(x) 简化计算。
  • 渐近线:正切、余切、正割、余割函数的渐近线位置需牢记,避免定义域错误。
  • 对称性:奇函数满足 f(−x)=−f(x),偶函数满足 f(−x)=f(x),可快速判断符号。

总结:掌握三角函数图像的形状、周期、对称性和关键点,能快速求解函数值并分析其性质,是微积分和信号处理的重要基础。

重要的公式

基本定义式

  1. 正切函数\ tan(x)=cos(x)sin(x)​
  2. 余切函数\ cot(x)=sin(x)cos(x)​

二、毕达哥拉斯恒等式

  1. 基础公式\ cos2(x)+sin2(x)=1
  2. 除以 cos2(x)\ 1+tan2(x)=sec2(x)
  3. 除以 sin2(x)\ cot2(x)+1=csc2(x)

三、互余恒等式

若两角之和为 2π​,则:
sin(2π​−x)cos(2π​−x)tan(2π​−x)cot(2π​−x)sec(2π​−x)csc(2π​−x)​=cos(x),=sin(x),=cot(x),=tan(x),=csc(x),=sec(x).​

四、和角公式

  1. 正弦和角\ sin(A+B)=sin(A)cos(B)+cos(A)sin(B)
  2. 余弦和角\ cos(A+B)=cos(A)cos(B)−sin(A)sin(B)
  3. 正弦差角\ sin(A−B)=sin(A)cos(B)−cos(A)sin(B)
  4. 余弦差角\ cos(A−B)=cos(A)cos(B)+sin(A)sin(B)

五、倍角公式

  1. 正弦倍角\ sin(2x)=2sin(x)cos(x)
  2. 余弦倍角\ cos(2x)=cos2(x)−sin2(x)=2cos2(x)−1=1−2sin2(x)
  3. 正切倍角\ tan(2x)=1−tan2(x)2tan(x)​

六、高倍角推导示例

  • 四倍角公式(推导方法):\ sin(4x)=2sin(2x)cos(2x)=8sin(x)cos3(x)−4sin(x)cos(x),
    cos(4x)=2cos2(2x)−1=8cos4(x)−8cos2(x)+1.

提示

  • 倍角公式可通过和角公式推导(如 A=B=x)。
  • 高倍角问题需逐步分解(如 4x=2⋅2x)。
  • 优先记忆基础公式,复杂恒等式可通过基础公式推导。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值