AI正在对全行业进行无差别的颠覆,所有人都面临着工作方式的升级。不是说有全新职业的出现,而是大部份职业都会被要求原地升级 + AI。我们每个人都会从个人劳动者转变成AI领导者,我们要提升自己的AI领导力。过去,我们通过个人的专业能力来交付工作成果,个人要亲自去执行具体的任务。现在到不远的未来,是我们带着AI一起工作并完成目标,我们作为AI的领导者,需要对AI团队进行目标设定,对AI协作过程进行管理和干预,对AI最终产出进行验收。虽然执行性的工具会逐渐交给AI,但这并不意味着对个人的专业能力不作要求了。相反,它对我们的专业能力要求更高了,因为我们需要以内行人的角度来验收AI给我们产出的东西,减少的只是我们做具体任务的时间。
因为AI,未来可能每个行业都可能呈现出两头重,中间轻的形成。以软件开发这个岗位来做一下推演。Vibe Coding这个词相信大家已有所耳闻,现在越来越多完全没有编程经验的人(暂称为小白)通过Cursor这类AI编程工具摇身变成了开发者,这类开发者自己动手解决长尾的、相对简单的个性化的需求,中低端的开发者的工作将会由小白们+AI来接管。但是大规模,严肃的生产型应用,小白 + AI也是无法掌控的,这个场景需要更专业的工程师,甚至是架构师+AI来支撑,AI一定是必备的了。可见,小白和架构师就是两头,初中级的工程师如果想要继续留在这个行业,是需要进一步提升自己的专业能力和AI领导力的。所以:全面拥抱AI吧,以最快的速度。
程序员转行到大模型开发领域,可以根据个人兴趣和职业规划选择不同的方向。以下是几个推荐的方向、推荐原因以及学习路线:
1、自然语言处理(NLP)工程师
推荐原因:
- NLP是AI大模型应用最广泛的领域之一,随着聊天机器人、机器翻译、情感分析等技术的普及,市场需求旺盛。
- 大模型如BERT、GPT等在NLP任务中表现出色,具备强大的文本理解和生成能力。
学习路线:
- 基础知识:掌握Python编程,熟悉常用库(如NumPy、Pandas),了解线性代数、概率统计、微积分。
- NLP基础:学习分词、词性标注、命名实体识别等基本概念和技术。
- 深度学习:深入理解神经网络结构,尤其是Transformer架构,并实践使用TensorFlow或PyTorch。
- 高级技术:研究预训练模型(如BERT、RoBERTa)、注意力机制、Prompt Engineering等。
2、计算机视觉(CV)工程师
推荐原因:
- CV涉及图像识别、物体检测、视频分析等多个应用场景,在安防监控、医疗影像等领域有着广泛应用。
- 随着多模态大模型的发展,CV与NLP结合的应用场景越来越多,例如图文匹配、视频字幕生成等。
学习路线:
- 基础知识:同上。
- CV基础:学习图像处理、特征提取、卷积神经网络(CNN)等基础知识。
- 深度学习:深入理解ResNet、EfficientNet等经典CV模型的工作原理及其实现方法。
- 项目实践:参与开源项目或企业实习,积累实际项目经验,尝试实现图像分类、目标检测等任务。
3、大模型算法工程师
推荐原因:
- 算法工程师负责设计、优化和部署大模型,直接参与到模型的研发过程中,对于追求技术创新的人来说是非常有吸引力的职业路径。
- 需要解决诸如模型压缩、知识蒸馏等问题,有助于提高模型效率并降低成本。
学习路线:
- 基础知识:同上。
- 算法理论:深入学习机器学习算法,特别是监督学习、无监督学习和强化学习。
- 深度学习框架:熟练使用TensorFlow、PyTorch等框架进行模型开发。
- 前沿技术:关注参数高效微调、稀疏激活模式利用等最新研究成果,探索如何更好地训练大规模模型。
4、 大模型部署工程师
推荐原因:
- 模型一旦训练完成,就需要考虑如何有效地将其部署到生产环境中,确保模型能够在实际业务场景中稳定运行。
- 部署工程师需要具备云计算、容器化技术和分布式系统的知识,这对于保证模型性能至关重要。
学习路线:
- 基础知识:同上。
- 云计算平台:学习AWS、Google Cloud、Azure等云服务平台的操作和AI服务。
- 资源管理:理解Docker、Kubernetes等容器化技术和编排工具,掌握资源调度和管理技巧。
- 推理加速:探索模型剪枝、量化等技术,以减少推理时延并节省计算资源。
总结:
每个方向都有其独特的挑战和发展机遇,程序员可以根据自己的背景和兴趣选择最适合自己的路径。无论选择哪个方向,持续学习最新的技术和保持对行业的敏感度都是非常重要的。此外,积极参与社区活动、贡献开源项目也是提升技能和个人影响力的有效方式。
大模型岗位需求
大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
掌握大模型技术你还能拥有更多可能性:
• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;
• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;
• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;
• 更优质的项目可以为未来创新创业提供基石。
可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!