题目
难度: 简单
题目内容:
给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。
示例1:
输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
- 支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。
示例2:
输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。
- 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
- 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
- 支付 1 ,向上爬一个台阶,到达楼梯顶部。
总花费为 6 。
前置思路
依然是比较简单的题,假设你所处台阶中的某一级,那么爬到该级的最小花费是min(爬到该级前一级的最小花费+前一级的花费,爬到该级前两级的最小花费+前两级的花费),由此可以得到状态的转移方程。
代码
class Solution:
def minCostClimbingStairs(self, cost: List[int]) -> int:
n = len(cost)
dp = [0] * (n + 1)
for i in range(2,n + 1):
dp[i] = min(dp[i-1] + cost[i-1],dp[i-2]+cost[i-2])
return dp[n]
思考
这题依然是题设条件已经几乎给出了状态方程,因此也没什么可以拓展的思考