机器学习(六)——贝叶斯分类器

贝叶斯分类器是一类分类算法的总称,均以贝叶斯定理为理论基础

一、预备知识—贝叶斯决策论

1.公式

\qquad 贝叶斯决策论是概率框架下的实施决策的基本方法。对于分类任务来说,在所有相关概率都已知的理想情况下,贝叶斯决策论考虑如何基于概率和误判损失来选择最优的类别标记。

\qquad 假设有N种输出类别,表示为 y y y={ c 1 , c 2 , c 3 . . . . . c N c_1,c_2,c_3.....c_N c1,c2,c3.....cN}
\qquad λ i j \lambda_{ij} λij表示为将一个真实属于 c j c_j cj的样本误分类为 c i c_i ci产生的损失。
\qquad 则将样本 x x x分类为 c i c_i ci所产生的期望损失,即在样本

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值