GAN对抗神经网络评估指标FID

FID—-Fréchet-Inception-Distance

BackGround

计算 IS 时只考虑了生成样本,没有考虑真实数据,即 IS 无法反映真实数据和样本之间的距离,IS 判断数据真实性的依据,源于 Inception V3 的训练集 ------ ImageNet,在 Inception V3 的“世界观”下,凡是不像 ImageNet 的数据,都是不真实的,都不能保证输出一个 sharp 的 predition distribution。因此,要想更好地评价生成网络,就要使用更加有效的方法计算真实分布与生成样本之间的距离。

Method

FID距离计算真实样本,生成样本在特征空间之间的距离。首先利用Inception网络来提取特征,然后使用高斯模型对特征空间进行建模,再去求解两个特征之间的距离,较低的FID意味着较高图片的质量和多样性。

Frechet Inception 距离得分(Frechet Inception Distance score,FID)是计算真实图像和生成图像的特征向量之间距离的一种度量。 假如一个随机变量服从高斯分布,这个分布可以用一个均值和方差来确定。那么两个分布只要均值和方差相同,则两个分布相同。我们就利用这个均值和方差来计算这两个单变量高斯分布之间的距离。但我们这里是多维的分布,我们知道协方差矩阵可以用来衡量两个维度之间的相关性。所以,我们使用均值和协方差矩阵来计算两个分布之间的距离

Limitation

虽然相比IS,FID的方法有了很大改进,但是对于ImageNet这种大规模数据集上的过拟合问题,仍然没有解决。除此之外,FID基于特征提取,也就是依赖于某些特征的出现或者不出现,因此无法描述这些特征的空间关系。例如用

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值