19.2-openmv视觉循迹功能-完成视觉识别指定区域

功能介绍放开头, 使用便捷无需愁

这是全网最详细、性价比最高的STM32实战项目入门教程,通过合理的硬件设计和详细的视频笔记介绍,硬件使用STM32F103主控资料多方便学习,通过3万字笔记、12多个小时视频、20多章节代码手把手教会你如何开发和调试。让你更快掌握嵌入式系统开发。

V3.3.0-STM32智能小车

视频: https://www.bilibili.com/video/BV16x4y1M7EN/?spm_id_from=333.337.search-card.all.click

V3:HAL库开发、功能:PID速度控制、PID循迹、PID跟随、遥控、避障、PID角度控制、视觉控制、电磁循迹、RTOS等功能。

19.2-openmv视觉循迹功能-完成视觉识别指定区域

功 能: Openmv循迹识别线

硬件要求: OpenMV4 H7 Plus 或者 OpenMV4 H7、openMV串口转接板(方便接线的,也可以不用)。

摄像头五个口 是否识别出来黑线,通过openmv软件串行终端输出
在这里插入图片描述
根据自己摄像头特点查看测试是否需要这两句 镜头反转的操作

# 注意是否有下面两句根据自己摄像头调整
sensor.set_vflip(True)  #垂直方向翻转 根据自己摄像头和模块安装位置调整 !!!重要不同摄像头是否需要镜像根据实际情况定,如果不需要镜像需要注释掉
sensor.set_hmirror(True) #水平方向反转 根据自己摄像头和模块安装位置调整 !!!重要不同摄像头是否需要镜像根据实际情况定,如果不需要镜像需要注释掉

这里通过摄像头识别指定区域是否我们想要的阈值

通过roi来定指定区域
在这里插入图片描述
通过阈值编辑器设置阈值
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
阈值保持在变量这里

#最好根据自己情况设置一下!!!
GROUND_THRESHOLD=(0, 30, -22, 23, -128, 80)#阈值参数,用于在图像处理中对标物体进行颜色识别分割。在OpenMV IDE软件 工具->机器视觉->阈值编辑器->帧缓冲区 调整出要识别的LAB阈值。

然后为了方便观察openmv 板子程序是否在运行,我们增加对板载RGB灯 运动控制

led = pyb.LED(1) # led = pyb.LED(1)表示led表示红灯。各种状态如下:Red LED = 1, Green LED = 2, Blue LED = 3, IR LEDs = 4.
led.on()         #点亮红灯 板载红灯点亮表示程序得到执行

使用代码如下

import pyb, sensor, image, math, time
from pyb import UART
import ustruct
from image import SEARCH_EX, SEARCH_DS
import time
import sensor, lcd
#导入需要的库和模块

#使用中可能根据自己情况需要修改的值
#1. GROUND_THRESHOLD 阈值参数 通过工具->机器视觉->阈值编辑器->帧缓冲区 调整出要识别的LAB阈值。
#2.注意是否有下面两句根据自己摄像头调整
  #sensor.set_vflip(True)
  #sensor.set_hmirror(True)


#sensor.set_contrast(1)#设置相机图像对比度。-3+3
#sensor.set_gainceiling(16)#设置相机图像增益上限。2, 4, 8, 16, 32, 64, 128

roi1 =	 [( 20,   105, 10, 10),
          ( 45,   105, 10, 10),
          ( 75,   105, 10, 10),
          ( 105,  105, 10, 10),
          (130,   105, 10, 10)]#定义一个名为roi1的列表,其中包含了5个元组。每个元组代表了一个矩形感兴趣区域在图像上的位置和大小。
#具体而言,每个元组包含了4个数值依次的含义是:ROI左上角点的x坐标、ROI左上角点的y坐标、ROI的宽度、ROI的高度


led = pyb.LED(1) # led = pyb.LED(1)表示led表示红灯。各种状态如下:Red LED = 1, Green LED = 2, Blue LED = 3, IR LEDs = 4.
led.on()         #点亮红灯 板载红灯点亮表示程序得到执行

sensor.reset()#初始化相机传感器。
sensor.set_pixformat(sensor.RGB565)#设置相机模块的像素模式:sensor.RGB565: 16 bits/像素。
sensor.set_framesize(sensor.QQVGA)#设置图像分辨率、如果改变分辨率也要调整ROI区域。摄像头不同、应用场景不同可以选择不同分辨率。这里使用QQVGA可能画质很胡,但是为了兼容不同型号摄像头我们先使用QQVGA 不影响循迹效果
sensor.skip_frames(time=2000)#跳过指定数目的帧。在这里,设置为跳过2000毫秒(即2秒)的帧。这样可以给传感器一些时间进行初始化和自适应调整。
sensor.set_auto_whitebal(True)#设置为自动白平衡模式。这使得摄像头可以根据场景中的光照条件自动调整图像的白平衡,从而保持图像色彩更加准确和自然。
sensor.set_auto_gain(False)#关闭自动增益模式。通常情况下,开启自动增益会帮助摄像头自动调整亮度,并在低亮度环境下提高图像清晰度。通过设置为False,禁用了这个功能,使用固定增益值。

# 注意是否有下面两句根据自己摄像头调整
sensor.set_vflip(True)  #垂直方向翻转 根据自己摄像头和模块安装位置调整 !!!重要不同摄像头是否需要镜像根据实际情况定,如果不需要镜像需要注释掉
sensor.set_hmirror(True) #水平方向反转 根据自己摄像头和模块安装位置调整 !!!重要不同摄像头是否需要镜像根据实际情况定,如果不需要镜像需要注释掉


#lcd.init() #初始化lcd屏幕

#最好根据自己情况设置一下!!!
GROUND_THRESHOLD=(0, 30, -22, 23, -128, 80)#阈值参数,用于在图像处理中对标物体进行颜色识别分割。在OpenMV IDE软件 工具->机器视觉->阈值编辑器->帧缓冲区 调整出要识别的LAB阈值。

while(True):

    data=0
    blob1=None
    blob2=None
    blob3=None
    blob4=None
    blob5=None
    flag = [0,0,0,0,0]
    img = sensor.snapshot().lens_corr(strength = 1.7 , zoom = 1.0)#对获取到的图像执行镜头校正的操作。
    blob1 = img.find_blobs([GROUND_THRESHOLD], roi=roi1[0])#在图像中通过颜色阈值 GROUND_THRESHOLD1 检测 roi1[0] 区域内的色块,并将检测结果赋值给 blob1。
    blob2 = img.find_blobs([GROUND_THRESHOLD], roi=roi1[1])#同理
    blob3 = img.find_blobs([GROUND_THRESHOLD], roi=roi1[2])
    blob4 = img.find_blobs([GROUND_THRESHOLD], roi=roi1[3])
    blob5 = img.find_blobs([GROUND_THRESHOLD], roi=roi1[4])

    if blob1:#如果roi1区域内找到阈值色块 就会赋值flag[0]1
        flag[0] = 1
    if blob2:
        flag[1] = 1
    if blob3:
        flag[2] = 1
    if blob4:
        flag[3] = 1
    if blob5:
        flag[4] = 1
    print(flag[0],flag[1],flag[2],flag[3],flag[4])#把数据打印在串行终端方便调试

    for rec in roi1:#遍历所有感兴趣的区域roi1 并绘制color=(255,0,0)颜色
        img.draw_rectangle(rec, color=(255,0,0))
        #lcd.display(img) # Take a picture and display the image.#将图像显示在lcd中

识别过程
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

code_未来

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值